Description: Integer multiple of a group sum. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummulg.b | |- B = ( Base ` G ) | |
| gsummulg.z | |- .0. = ( 0g ` G ) | ||
| gsummulg.t | |- .x. = ( .g ` G ) | ||
| gsummulg.a | |- ( ph -> A e. V ) | ||
| gsummulg.f | |- ( ( ph /\ k e. A ) -> X e. B ) | ||
| gsummulg.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) | ||
| gsummulgz.g | |- ( ph -> G e. Abel ) | ||
| gsummulgz.n | |- ( ph -> N e. ZZ ) | ||
| Assertion | gsummulgz | |- ( ph -> ( G gsum ( k e. A |-> ( N .x. X ) ) ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gsummulg.b | |- B = ( Base ` G ) | |
| 2 | gsummulg.z | |- .0. = ( 0g ` G ) | |
| 3 | gsummulg.t | |- .x. = ( .g ` G ) | |
| 4 | gsummulg.a | |- ( ph -> A e. V ) | |
| 5 | gsummulg.f | |- ( ( ph /\ k e. A ) -> X e. B ) | |
| 6 | gsummulg.w | |- ( ph -> ( k e. A |-> X ) finSupp .0. ) | |
| 7 | gsummulgz.g | |- ( ph -> G e. Abel ) | |
| 8 | gsummulgz.n | |- ( ph -> N e. ZZ ) | |
| 9 | ablcmn | |- ( G e. Abel -> G e. CMnd ) | |
| 10 | 7 9 | syl | |- ( ph -> G e. CMnd ) | 
| 11 | 7 | orcd | |- ( ph -> ( G e. Abel \/ N e. NN0 ) ) | 
| 12 | 1 2 3 4 5 6 10 8 11 | gsummulglem | |- ( ph -> ( G gsum ( k e. A |-> ( N .x. X ) ) ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) |