| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumncl.k |  |-  K = ( Base ` M ) | 
						
							| 2 |  | gsumncl.w |  |-  ( ph -> M e. Mnd ) | 
						
							| 3 |  | gsumncl.p |  |-  ( ph -> P e. ( ZZ>= ` N ) ) | 
						
							| 4 |  | gsumncl.b |  |-  ( ( ph /\ k e. ( N ... P ) ) -> B e. K ) | 
						
							| 5 |  | gsumnunsn.a |  |-  .+ = ( +g ` M ) | 
						
							| 6 |  | gsumnunsn.l |  |-  ( ph -> C e. K ) | 
						
							| 7 |  | gsumnunsn.c |  |-  ( ( ph /\ k = ( P + 1 ) ) -> B = C ) | 
						
							| 8 |  | seqp1 |  |-  ( P e. ( ZZ>= ` N ) -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) | 
						
							| 9 | 3 8 | syl |  |-  ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) | 
						
							| 10 |  | peano2uz |  |-  ( P e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> ( P + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 12 | 4 | adantlr |  |-  ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k e. ( N ... P ) ) -> B e. K ) | 
						
							| 13 | 7 | adantlr |  |-  ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B = C ) | 
						
							| 14 | 6 | ad2antrr |  |-  ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> C e. K ) | 
						
							| 15 | 13 14 | eqeltrd |  |-  ( ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) /\ k = ( P + 1 ) ) -> B e. K ) | 
						
							| 16 |  | elfzp1 |  |-  ( P e. ( ZZ>= ` N ) -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) | 
						
							| 17 | 3 16 | syl |  |-  ( ph -> ( k e. ( N ... ( P + 1 ) ) <-> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> ( k e. ( N ... P ) \/ k = ( P + 1 ) ) ) | 
						
							| 19 | 12 15 18 | mpjaodan |  |-  ( ( ph /\ k e. ( N ... ( P + 1 ) ) ) -> B e. K ) | 
						
							| 20 | 19 | fmpttd |  |-  ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) : ( N ... ( P + 1 ) ) --> K ) | 
						
							| 21 | 1 5 2 11 20 | gsumval2 |  |-  ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` ( P + 1 ) ) ) | 
						
							| 22 | 4 | fmpttd |  |-  ( ph -> ( k e. ( N ... P ) |-> B ) : ( N ... P ) --> K ) | 
						
							| 23 | 1 5 2 3 22 | gsumval2 |  |-  ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) | 
						
							| 24 |  | fvres |  |-  ( i e. ( N ... P ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ph /\ i e. ( N ... P ) ) -> ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) ) | 
						
							| 26 |  | fzssp1 |  |-  ( N ... P ) C_ ( N ... ( P + 1 ) ) | 
						
							| 27 |  | resmpt |  |-  ( ( N ... P ) C_ ( N ... ( P + 1 ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) ) | 
						
							| 28 | 26 27 | ax-mp |  |-  ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) = ( k e. ( N ... P ) |-> B ) | 
						
							| 29 | 28 | fveq1i |  |-  ( ( ( k e. ( N ... ( P + 1 ) ) |-> B ) |` ( N ... P ) ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) | 
						
							| 30 | 25 29 | eqtr3di |  |-  ( ( ph /\ i e. ( N ... P ) ) -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` i ) = ( ( k e. ( N ... P ) |-> B ) ` i ) ) | 
						
							| 31 | 3 30 | seqfveq |  |-  ( ph -> ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) = ( seq N ( .+ , ( k e. ( N ... P ) |-> B ) ) ` P ) ) | 
						
							| 32 | 23 31 | eqtr4d |  |-  ( ph -> ( M gsum ( k e. ( N ... P ) |-> B ) ) = ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) ) | 
						
							| 33 |  | eqidd |  |-  ( ph -> ( k e. ( N ... ( P + 1 ) ) |-> B ) = ( k e. ( N ... ( P + 1 ) ) |-> B ) ) | 
						
							| 34 |  | eluzfz2 |  |-  ( ( P + 1 ) e. ( ZZ>= ` N ) -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) | 
						
							| 35 | 11 34 | syl |  |-  ( ph -> ( P + 1 ) e. ( N ... ( P + 1 ) ) ) | 
						
							| 36 | 33 7 35 6 | fvmptd |  |-  ( ph -> ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) = C ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ph -> C = ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) | 
						
							| 38 | 32 37 | oveq12d |  |-  ( ph -> ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) = ( ( seq N ( .+ , ( k e. ( N ... ( P + 1 ) ) |-> B ) ) ` P ) .+ ( ( k e. ( N ... ( P + 1 ) ) |-> B ) ` ( P + 1 ) ) ) ) | 
						
							| 39 | 9 21 38 | 3eqtr4d |  |-  ( ph -> ( M gsum ( k e. ( N ... ( P + 1 ) ) |-> B ) ) = ( ( M gsum ( k e. ( N ... P ) |-> B ) ) .+ C ) ) |