| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumply1eq.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
gsumply1eq.x |
|- X = ( var1 ` R ) |
| 3 |
|
gsumply1eq.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 4 |
|
gsumply1eq.r |
|- ( ph -> R e. Ring ) |
| 5 |
|
gsumply1eq.k |
|- K = ( Base ` R ) |
| 6 |
|
gsumply1eq.m |
|- .* = ( .s ` P ) |
| 7 |
|
gsumply1eq.0 |
|- .0. = ( 0g ` R ) |
| 8 |
|
gsumply1eq.a |
|- ( ph -> A. k e. NN0 A e. K ) |
| 9 |
|
gsumply1eq.f1 |
|- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
| 10 |
|
gsumply1eq.b |
|- ( ph -> A. k e. NN0 B e. K ) |
| 11 |
|
gsumply1eq.f2 |
|- ( ph -> ( k e. NN0 |-> B ) finSupp .0. ) |
| 12 |
|
gsumply1eq.o |
|- ( ph -> O = ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) |
| 13 |
|
gsumply1eq.q |
|- ( ph -> Q = ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) ) |
| 14 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 15 |
1 14 2 3 4 5 6 7 8 9
|
gsumsmonply1 |
|- ( ph -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) e. ( Base ` P ) ) |
| 16 |
12 15
|
eqeltrd |
|- ( ph -> O e. ( Base ` P ) ) |
| 17 |
1 14 2 3 4 5 6 7 10 11
|
gsumsmonply1 |
|- ( ph -> ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) e. ( Base ` P ) ) |
| 18 |
13 17
|
eqeltrd |
|- ( ph -> Q e. ( Base ` P ) ) |
| 19 |
|
eqid |
|- ( coe1 ` O ) = ( coe1 ` O ) |
| 20 |
|
eqid |
|- ( coe1 ` Q ) = ( coe1 ` Q ) |
| 21 |
1 14 19 20
|
ply1coe1eq |
|- ( ( R e. Ring /\ O e. ( Base ` P ) /\ Q e. ( Base ` P ) ) -> ( A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> O = Q ) ) |
| 22 |
21
|
bicomd |
|- ( ( R e. Ring /\ O e. ( Base ` P ) /\ Q e. ( Base ` P ) ) -> ( O = Q <-> A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) ) ) |
| 23 |
4 16 18 22
|
syl3anc |
|- ( ph -> ( O = Q <-> A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) ) ) |
| 24 |
12
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> O = ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) |
| 25 |
|
nfcv |
|- F/_ l ( A .* ( k .^ X ) ) |
| 26 |
|
nfcsb1v |
|- F/_ k [_ l / k ]_ A |
| 27 |
|
nfcv |
|- F/_ k .* |
| 28 |
|
nfcv |
|- F/_ k ( l .^ X ) |
| 29 |
26 27 28
|
nfov |
|- F/_ k ( [_ l / k ]_ A .* ( l .^ X ) ) |
| 30 |
|
csbeq1a |
|- ( k = l -> A = [_ l / k ]_ A ) |
| 31 |
|
oveq1 |
|- ( k = l -> ( k .^ X ) = ( l .^ X ) ) |
| 32 |
30 31
|
oveq12d |
|- ( k = l -> ( A .* ( k .^ X ) ) = ( [_ l / k ]_ A .* ( l .^ X ) ) ) |
| 33 |
25 29 32
|
cbvmpt |
|- ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) |
| 34 |
33
|
oveq2i |
|- ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) |
| 35 |
24 34
|
eqtrdi |
|- ( ( ph /\ k e. NN0 ) -> O = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) |
| 36 |
35
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( coe1 ` O ) = ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ) |
| 37 |
36
|
fveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` O ) ` k ) = ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) ) |
| 38 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> R e. Ring ) |
| 39 |
|
nfv |
|- F/ l A e. K |
| 40 |
26
|
nfel1 |
|- F/ k [_ l / k ]_ A e. K |
| 41 |
30
|
eleq1d |
|- ( k = l -> ( A e. K <-> [_ l / k ]_ A e. K ) ) |
| 42 |
39 40 41
|
cbvralw |
|- ( A. k e. NN0 A e. K <-> A. l e. NN0 [_ l / k ]_ A e. K ) |
| 43 |
8 42
|
sylib |
|- ( ph -> A. l e. NN0 [_ l / k ]_ A e. K ) |
| 44 |
43
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A. l e. NN0 [_ l / k ]_ A e. K ) |
| 45 |
|
nfcv |
|- F/_ l A |
| 46 |
45 26 30
|
cbvmpt |
|- ( k e. NN0 |-> A ) = ( l e. NN0 |-> [_ l / k ]_ A ) |
| 47 |
46 9
|
eqbrtrrid |
|- ( ph -> ( l e. NN0 |-> [_ l / k ]_ A ) finSupp .0. ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( l e. NN0 |-> [_ l / k ]_ A ) finSupp .0. ) |
| 49 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 50 |
1 14 2 3 38 5 6 7 44 48 49
|
gsummoncoe1 |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) = [_ k / l ]_ [_ l / k ]_ A ) |
| 51 |
|
csbcow |
|- [_ k / l ]_ [_ l / k ]_ A = [_ k / k ]_ A |
| 52 |
|
csbid |
|- [_ k / k ]_ A = A |
| 53 |
51 52
|
eqtri |
|- [_ k / l ]_ [_ l / k ]_ A = A |
| 54 |
50 53
|
eqtrdi |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) = A ) |
| 55 |
37 54
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` O ) ` k ) = A ) |
| 56 |
13
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> Q = ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) ) |
| 57 |
|
nfcv |
|- F/_ l ( B .* ( k .^ X ) ) |
| 58 |
|
nfcsb1v |
|- F/_ k [_ l / k ]_ B |
| 59 |
58 27 28
|
nfov |
|- F/_ k ( [_ l / k ]_ B .* ( l .^ X ) ) |
| 60 |
|
csbeq1a |
|- ( k = l -> B = [_ l / k ]_ B ) |
| 61 |
60 31
|
oveq12d |
|- ( k = l -> ( B .* ( k .^ X ) ) = ( [_ l / k ]_ B .* ( l .^ X ) ) ) |
| 62 |
57 59 61
|
cbvmpt |
|- ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) |
| 63 |
62
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) |
| 64 |
63
|
oveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) |
| 65 |
56 64
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> Q = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) |
| 66 |
65
|
fveq2d |
|- ( ( ph /\ k e. NN0 ) -> ( coe1 ` Q ) = ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ) |
| 67 |
66
|
fveq1d |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` Q ) ` k ) = ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) ) |
| 68 |
|
nfv |
|- F/ l B e. K |
| 69 |
58
|
nfel1 |
|- F/ k [_ l / k ]_ B e. K |
| 70 |
60
|
eleq1d |
|- ( k = l -> ( B e. K <-> [_ l / k ]_ B e. K ) ) |
| 71 |
68 69 70
|
cbvralw |
|- ( A. k e. NN0 B e. K <-> A. l e. NN0 [_ l / k ]_ B e. K ) |
| 72 |
10 71
|
sylib |
|- ( ph -> A. l e. NN0 [_ l / k ]_ B e. K ) |
| 73 |
72
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A. l e. NN0 [_ l / k ]_ B e. K ) |
| 74 |
|
nfcv |
|- F/_ l B |
| 75 |
74 58 60
|
cbvmpt |
|- ( k e. NN0 |-> B ) = ( l e. NN0 |-> [_ l / k ]_ B ) |
| 76 |
75 11
|
eqbrtrrid |
|- ( ph -> ( l e. NN0 |-> [_ l / k ]_ B ) finSupp .0. ) |
| 77 |
76
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( l e. NN0 |-> [_ l / k ]_ B ) finSupp .0. ) |
| 78 |
1 14 2 3 38 5 6 7 73 77 49
|
gsummoncoe1 |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) = [_ k / l ]_ [_ l / k ]_ B ) |
| 79 |
|
csbcow |
|- [_ k / l ]_ [_ l / k ]_ B = [_ k / k ]_ B |
| 80 |
|
csbid |
|- [_ k / k ]_ B = B |
| 81 |
79 80
|
eqtri |
|- [_ k / l ]_ [_ l / k ]_ B = B |
| 82 |
78 81
|
eqtrdi |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) = B ) |
| 83 |
67 82
|
eqtrd |
|- ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` Q ) ` k ) = B ) |
| 84 |
55 83
|
eqeq12d |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> A = B ) ) |
| 85 |
84
|
ralbidva |
|- ( ph -> ( A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> A. k e. NN0 A = B ) ) |
| 86 |
23 85
|
bitrd |
|- ( ph -> ( O = Q <-> A. k e. NN0 A = B ) ) |