| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd.f |  |-  ( ph -> F e. V ) | 
						
							| 2 |  | gsumpropd.g |  |-  ( ph -> G e. W ) | 
						
							| 3 |  | gsumpropd.h |  |-  ( ph -> H e. X ) | 
						
							| 4 |  | gsumpropd.b |  |-  ( ph -> ( Base ` G ) = ( Base ` H ) ) | 
						
							| 5 |  | gsumpropd.p |  |-  ( ph -> ( +g ` G ) = ( +g ` H ) ) | 
						
							| 6 | 5 | oveqd |  |-  ( ph -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) | 
						
							| 7 | 6 | eqeq1d |  |-  ( ph -> ( ( s ( +g ` G ) t ) = t <-> ( s ( +g ` H ) t ) = t ) ) | 
						
							| 8 | 5 | oveqd |  |-  ( ph -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) | 
						
							| 9 | 8 | eqeq1d |  |-  ( ph -> ( ( t ( +g ` G ) s ) = t <-> ( t ( +g ` H ) s ) = t ) ) | 
						
							| 10 | 7 9 | anbi12d |  |-  ( ph -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) | 
						
							| 11 | 4 10 | raleqbidv |  |-  ( ph -> ( A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) | 
						
							| 12 | 4 11 | rabeqbidv |  |-  ( ph -> { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) | 
						
							| 13 | 12 | sseq2d |  |-  ( ph -> ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } <-> ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 14 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 15 | 5 | oveqdr |  |-  ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) | 
						
							| 16 | 14 4 15 | grpidpropd |  |-  ( ph -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 17 | 5 | seqeq2d |  |-  ( ph -> seq m ( ( +g ` G ) , F ) = seq m ( ( +g ` H ) , F ) ) | 
						
							| 18 | 17 | fveq1d |  |-  ( ph -> ( seq m ( ( +g ` G ) , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( ph -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( ph -> ( ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 21 | 20 | rexbidv |  |-  ( ph -> ( E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 22 | 21 | exbidv |  |-  ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 23 | 22 | iotabidv |  |-  ( ph -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 24 | 12 | difeq2d |  |-  ( ph -> ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) = ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 25 | 24 | imaeq2d |  |-  ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) = ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ph -> ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) = ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) | 
						
							| 28 | 27 | f1oeq2d |  |-  ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) | 
						
							| 29 | 25 | f1oeq3d |  |-  ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) | 
						
							| 30 | 28 29 | bitrd |  |-  ( ph -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) <-> f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) | 
						
							| 31 | 5 | seqeq2d |  |-  ( ph -> seq 1 ( ( +g ` G ) , ( F o. f ) ) = seq 1 ( ( +g ` H ) , ( F o. f ) ) ) | 
						
							| 32 | 31 26 | fveq12d |  |-  ( ph -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( ph -> ( x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) <-> x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) | 
						
							| 34 | 30 33 | anbi12d |  |-  ( ph -> ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) <-> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) | 
						
							| 35 | 34 | exbidv |  |-  ( ph -> ( E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) <-> E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) | 
						
							| 36 | 35 | iotabidv |  |-  ( ph -> ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) | 
						
							| 37 | 23 36 | ifeq12d |  |-  ( ph -> if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) = if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) | 
						
							| 38 | 13 16 37 | ifbieq12d |  |-  ( ph -> if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) ) | 
						
							| 39 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 40 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 41 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 42 |  | eqid |  |-  { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } | 
						
							| 43 |  | eqidd |  |-  ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) | 
						
							| 44 |  | eqidd |  |-  ( ph -> dom F = dom F ) | 
						
							| 45 | 39 40 41 42 43 2 1 44 | gsumvalx |  |-  ( ph -> ( G gsum F ) = if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) ) ) ) ) ) ) | 
						
							| 46 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 47 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 48 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 49 |  | eqid |  |-  { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } | 
						
							| 50 |  | eqidd |  |-  ( ph -> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) | 
						
							| 51 | 46 47 48 49 50 3 1 44 | gsumvalx |  |-  ( ph -> ( H gsum F ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) ) ) ) ) ) ) | 
						
							| 52 | 38 45 51 | 3eqtr4d |  |-  ( ph -> ( G gsum F ) = ( H gsum F ) ) |