| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd2.f |  |-  ( ph -> F e. V ) | 
						
							| 2 |  | gsumpropd2.g |  |-  ( ph -> G e. W ) | 
						
							| 3 |  | gsumpropd2.h |  |-  ( ph -> H e. X ) | 
						
							| 4 |  | gsumpropd2.b |  |-  ( ph -> ( Base ` G ) = ( Base ` H ) ) | 
						
							| 5 |  | gsumpropd2.c |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) | 
						
							| 6 |  | gsumpropd2.e |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) | 
						
							| 7 |  | gsumpropd2.n |  |-  ( ph -> Fun F ) | 
						
							| 8 |  | gsumpropd2.r |  |-  ( ph -> ran F C_ ( Base ` G ) ) | 
						
							| 9 |  | eqid |  |-  ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) | 
						
							| 10 |  | eqid |  |-  ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | gsumpropd2lem |  |-  ( ph -> ( G gsum F ) = ( H gsum F ) ) |