Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpropd2.f |
|- ( ph -> F e. V ) |
2 |
|
gsumpropd2.g |
|- ( ph -> G e. W ) |
3 |
|
gsumpropd2.h |
|- ( ph -> H e. X ) |
4 |
|
gsumpropd2.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
5 |
|
gsumpropd2.c |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) |
6 |
|
gsumpropd2.e |
|- ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) |
7 |
|
gsumpropd2.n |
|- ( ph -> Fun F ) |
8 |
|
gsumpropd2.r |
|- ( ph -> ran F C_ ( Base ` G ) ) |
9 |
|
eqid |
|- ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) |
10 |
|
eqid |
|- ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
gsumpropd2lem |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |