| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd2.f |  |-  ( ph -> F e. V ) | 
						
							| 2 |  | gsumpropd2.g |  |-  ( ph -> G e. W ) | 
						
							| 3 |  | gsumpropd2.h |  |-  ( ph -> H e. X ) | 
						
							| 4 |  | gsumpropd2.b |  |-  ( ph -> ( Base ` G ) = ( Base ` H ) ) | 
						
							| 5 |  | gsumpropd2.c |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) | 
						
							| 6 |  | gsumpropd2.e |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) | 
						
							| 7 |  | gsumpropd2.n |  |-  ( ph -> Fun F ) | 
						
							| 8 |  | gsumpropd2.r |  |-  ( ph -> ran F C_ ( Base ` G ) ) | 
						
							| 9 |  | gsumprop2dlem.1 |  |-  A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) | 
						
							| 10 |  | gsumprop2dlem.2 |  |-  B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 11 | 4 | adantr |  |-  ( ( ph /\ s e. ( Base ` G ) ) -> ( Base ` G ) = ( Base ` H ) ) | 
						
							| 12 | 6 | eqeq1d |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( s ( +g ` G ) t ) = t <-> ( s ( +g ` H ) t ) = t ) ) | 
						
							| 13 | 6 | oveqrspc2v |  |-  ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) | 
						
							| 14 | 13 | oveqrspc2v |  |-  ( ( ph /\ ( t e. ( Base ` G ) /\ s e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) | 
						
							| 15 | 14 | ancom2s |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( t ( +g ` G ) s ) = ( t ( +g ` H ) s ) ) | 
						
							| 16 | 15 | eqeq1d |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( t ( +g ` G ) s ) = t <-> ( t ( +g ` H ) s ) = t ) ) | 
						
							| 17 | 12 16 | anbi12d |  |-  ( ( ph /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) | 
						
							| 18 | 17 | anassrs |  |-  ( ( ( ph /\ s e. ( Base ` G ) ) /\ t e. ( Base ` G ) ) -> ( ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) | 
						
							| 19 | 11 18 | raleqbidva |  |-  ( ( ph /\ s e. ( Base ` G ) ) -> ( A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) <-> A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) ) ) | 
						
							| 20 | 4 19 | rabeqbidva |  |-  ( ph -> { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) | 
						
							| 21 | 20 | sseq2d |  |-  ( ph -> ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } <-> ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 22 |  | eqidd |  |-  ( ph -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 23 | 22 4 6 | grpidpropd |  |-  ( ph -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 24 |  | simprl |  |-  ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> n e. ( ZZ>= ` m ) ) | 
						
							| 25 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ran F C_ ( Base ` G ) ) | 
						
							| 26 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> Fun F ) | 
						
							| 27 |  | simpr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. ( m ... n ) ) | 
						
							| 28 |  | simplrr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> dom F = ( m ... n ) ) | 
						
							| 29 | 27 28 | eleqtrrd |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> s e. dom F ) | 
						
							| 30 |  | fvelrn |  |-  ( ( Fun F /\ s e. dom F ) -> ( F ` s ) e. ran F ) | 
						
							| 31 | 26 29 30 | syl2anc |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ran F ) | 
						
							| 32 | 25 31 | sseldd |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ s e. ( m ... n ) ) -> ( F ` s ) e. ( Base ` G ) ) | 
						
							| 33 | 5 | adantlr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) e. ( Base ` G ) ) | 
						
							| 34 | 6 | adantlr |  |-  ( ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) /\ ( s e. ( Base ` G ) /\ t e. ( Base ` G ) ) ) -> ( s ( +g ` G ) t ) = ( s ( +g ` H ) t ) ) | 
						
							| 35 | 24 32 33 34 | seqfeq4 |  |-  ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( seq m ( ( +g ` G ) , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) | 
						
							| 36 | 35 | eqeq2d |  |-  ( ( ph /\ ( n e. ( ZZ>= ` m ) /\ dom F = ( m ... n ) ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) | 
						
							| 37 | 36 | anassrs |  |-  ( ( ( ph /\ n e. ( ZZ>= ` m ) ) /\ dom F = ( m ... n ) ) -> ( x = ( seq m ( ( +g ` G ) , F ) ` n ) <-> x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) | 
						
							| 38 | 37 | pm5.32da |  |-  ( ( ph /\ n e. ( ZZ>= ` m ) ) -> ( ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 39 | 38 | rexbidva |  |-  ( ph -> ( E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 40 | 39 | exbidv |  |-  ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 41 | 40 | iotabidv |  |-  ( ph -> ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) = ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 42 | 20 | difeq2d |  |-  ( ph -> ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) = ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) | 
						
							| 43 | 42 | imaeq2d |  |-  ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) | 
						
							| 44 | 43 9 10 | 3eqtr4g |  |-  ( ph -> A = B ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ph -> ( # ` A ) = ( # ` B ) ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ph -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 48 |  | simpr |  |-  ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 49 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ran F C_ ( Base ` G ) ) | 
						
							| 50 |  | f1ofun |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> Fun f ) | 
						
							| 51 | 50 | ad3antlr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun f ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` B ) ) ) | 
						
							| 53 |  | f1odm |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> dom f = ( 1 ... ( # ` A ) ) ) | 
						
							| 54 | 53 | ad3antlr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` A ) ) ) | 
						
							| 55 | 45 | oveq2d |  |-  ( ph -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) | 
						
							| 56 | 55 | ad3antrrr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( 1 ... ( # ` A ) ) = ( 1 ... ( # ` B ) ) ) | 
						
							| 57 | 54 56 | eqtrd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> dom f = ( 1 ... ( # ` B ) ) ) | 
						
							| 58 | 52 57 | eleqtrrd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. dom f ) | 
						
							| 59 |  | fvco |  |-  ( ( Fun f /\ a e. dom f ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) | 
						
							| 60 | 51 58 59 | syl2anc |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) = ( F ` ( f ` a ) ) ) | 
						
							| 61 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> Fun F ) | 
						
							| 62 |  | difpreima |  |-  ( Fun F -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) | 
						
							| 63 | 7 62 | syl |  |-  ( ph -> ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) | 
						
							| 64 | 9 63 | eqtrid |  |-  ( ph -> A = ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) | 
						
							| 65 |  | difss |  |-  ( ( `' F " _V ) \ ( `' F " { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) C_ ( `' F " _V ) | 
						
							| 66 | 64 65 | eqsstrdi |  |-  ( ph -> A C_ ( `' F " _V ) ) | 
						
							| 67 |  | dfdm4 |  |-  dom F = ran `' F | 
						
							| 68 |  | dfrn4 |  |-  ran `' F = ( `' F " _V ) | 
						
							| 69 | 67 68 | eqtri |  |-  dom F = ( `' F " _V ) | 
						
							| 70 | 66 69 | sseqtrrdi |  |-  ( ph -> A C_ dom F ) | 
						
							| 71 | 70 | ad3antrrr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> A C_ dom F ) | 
						
							| 72 |  | f1of |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) | 
						
							| 73 | 72 | ad3antlr |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) | 
						
							| 74 | 52 56 | eleqtrrd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> a e. ( 1 ... ( # ` A ) ) ) | 
						
							| 75 | 73 74 | ffvelcdmd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. A ) | 
						
							| 76 | 71 75 | sseldd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( f ` a ) e. dom F ) | 
						
							| 77 |  | fvelrn |  |-  ( ( Fun F /\ ( f ` a ) e. dom F ) -> ( F ` ( f ` a ) ) e. ran F ) | 
						
							| 78 | 61 76 77 | syl2anc |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( F ` ( f ` a ) ) e. ran F ) | 
						
							| 79 | 60 78 | eqeltrd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ran F ) | 
						
							| 80 | 49 79 | sseldd |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ a e. ( 1 ... ( # ` B ) ) ) -> ( ( F o. f ) ` a ) e. ( Base ` G ) ) | 
						
							| 81 | 5 | caovclg |  |-  ( ( ph /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) | 
						
							| 82 | 81 | ad4ant14 |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) e. ( Base ` G ) ) | 
						
							| 83 | 13 | ad4ant14 |  |-  ( ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) /\ ( a e. ( Base ` G ) /\ b e. ( Base ` G ) ) ) -> ( a ( +g ` G ) b ) = ( a ( +g ` H ) b ) ) | 
						
							| 84 | 48 80 82 83 | seqfeq4 |  |-  ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 85 |  | simpr |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 86 |  | 1z |  |-  1 e. ZZ | 
						
							| 87 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 88 |  | fndm |  |-  ( seq 1 ( ( +g ` G ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) | 
						
							| 89 | 86 87 88 | mp2b |  |-  dom seq 1 ( ( +g ` G ) , ( F o. f ) ) = ( ZZ>= ` 1 ) | 
						
							| 90 | 89 | eleq2i |  |-  ( ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 91 | 85 90 | sylnibr |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) ) | 
						
							| 92 |  | ndmfv |  |-  ( -. ( # ` B ) e. dom seq 1 ( ( +g ` G ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) | 
						
							| 93 | 91 92 | syl |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) | 
						
							| 94 |  | seqfn |  |-  ( 1 e. ZZ -> seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) ) | 
						
							| 95 |  | fndm |  |-  ( seq 1 ( ( +g ` H ) , ( F o. f ) ) Fn ( ZZ>= ` 1 ) -> dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) ) | 
						
							| 96 | 86 94 95 | mp2b |  |-  dom seq 1 ( ( +g ` H ) , ( F o. f ) ) = ( ZZ>= ` 1 ) | 
						
							| 97 | 96 | eleq2i |  |-  ( ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) <-> ( # ` B ) e. ( ZZ>= ` 1 ) ) | 
						
							| 98 | 85 97 | sylnibr |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) ) | 
						
							| 99 |  | ndmfv |  |-  ( -. ( # ` B ) e. dom seq 1 ( ( +g ` H ) , ( F o. f ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) | 
						
							| 100 | 98 99 | syl |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) = (/) ) | 
						
							| 101 | 93 100 | eqtr4d |  |-  ( ( ph /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 102 | 101 | adantlr |  |-  ( ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) /\ -. ( # ` B ) e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 103 | 84 102 | pm2.61dan |  |-  ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` B ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 104 | 47 103 | eqtrd |  |-  ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) | 
						
							| 105 | 104 | eqeq2d |  |-  ( ( ph /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) <-> x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) | 
						
							| 106 | 105 | pm5.32da |  |-  ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) | 
						
							| 107 | 55 | f1oeq2d |  |-  ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> A ) ) | 
						
							| 108 | 44 | f1oeq3d |  |-  ( ph -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) | 
						
							| 109 | 107 108 | bitrd |  |-  ( ph -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A <-> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) | 
						
							| 110 | 109 | anbi1d |  |-  ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) | 
						
							| 111 | 106 110 | bitrd |  |-  ( ph -> ( ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) | 
						
							| 112 | 111 | exbidv |  |-  ( ph -> ( E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) <-> E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) | 
						
							| 113 | 112 | iotabidv |  |-  ( ph -> ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) | 
						
							| 114 | 41 113 | ifeq12d |  |-  ( ph -> if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) = if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) | 
						
							| 115 | 21 23 114 | ifbieq12d |  |-  ( ph -> if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) | 
						
							| 116 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 117 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 118 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 119 |  | eqid |  |-  { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } = { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } | 
						
							| 120 | 9 | a1i |  |-  ( ph -> A = ( `' F " ( _V \ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } ) ) ) | 
						
							| 121 |  | eqidd |  |-  ( ph -> dom F = dom F ) | 
						
							| 122 | 116 117 118 119 120 2 1 121 | gsumvalx |  |-  ( ph -> ( G gsum F ) = if ( ran F C_ { s e. ( Base ` G ) | A. t e. ( Base ` G ) ( ( s ( +g ` G ) t ) = t /\ ( t ( +g ` G ) s ) = t ) } , ( 0g ` G ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` G ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ x = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` A ) ) ) ) ) ) ) | 
						
							| 123 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 124 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 125 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 126 |  | eqid |  |-  { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } = { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } | 
						
							| 127 | 10 | a1i |  |-  ( ph -> B = ( `' F " ( _V \ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } ) ) ) | 
						
							| 128 | 123 124 125 126 127 3 1 121 | gsumvalx |  |-  ( ph -> ( H gsum F ) = if ( ran F C_ { s e. ( Base ` H ) | A. t e. ( Base ` H ) ( ( s ( +g ` H ) t ) = t /\ ( t ( +g ` H ) s ) = t ) } , ( 0g ` H ) , if ( dom F e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom F = ( m ... n ) /\ x = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B /\ x = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` B ) ) ) ) ) ) ) | 
						
							| 129 | 115 122 128 | 3eqtr4d |  |-  ( ph -> ( G gsum F ) = ( H gsum F ) ) |