Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpt.b |
|- B = ( Base ` G ) |
2 |
|
gsumpt.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsumpt.g |
|- ( ph -> G e. Mnd ) |
4 |
|
gsumpt.a |
|- ( ph -> A e. V ) |
5 |
|
gsumpt.x |
|- ( ph -> X e. A ) |
6 |
|
gsumpt.f |
|- ( ph -> F : A --> B ) |
7 |
|
gsumpt.s |
|- ( ph -> ( F supp .0. ) C_ { X } ) |
8 |
5
|
snssd |
|- ( ph -> { X } C_ A ) |
9 |
6 8
|
feqresmpt |
|- ( ph -> ( F |` { X } ) = ( a e. { X } |-> ( F ` a ) ) ) |
10 |
9
|
oveq2d |
|- ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum ( a e. { X } |-> ( F ` a ) ) ) ) |
11 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
12 |
6 5
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. B ) |
13 |
|
eqidd |
|- ( ph -> ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) |
14 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
15 |
1 14 11
|
elcntzsn |
|- ( ( F ` X ) e. B -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) |
16 |
12 15
|
syl |
|- ( ph -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) |
17 |
12 13 16
|
mpbir2and |
|- ( ph -> ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) ) |
18 |
17
|
snssd |
|- ( ph -> { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) |
19 |
|
eqid |
|- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
20 |
|
eqid |
|- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
21 |
11 19 20
|
cntzspan |
|- ( ( G e. Mnd /\ { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) |
22 |
3 18 21
|
syl2anc |
|- ( ph -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) |
23 |
1
|
submacs |
|- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
24 |
|
acsmre |
|- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
25 |
3 23 24
|
3syl |
|- ( ph -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
26 |
12
|
snssd |
|- ( ph -> { ( F ` X ) } C_ B ) |
27 |
19
|
mrccl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ { ( F ` X ) } C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) |
28 |
25 26 27
|
syl2anc |
|- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) |
29 |
20 11
|
submcmn2 |
|- ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) |
30 |
28 29
|
syl |
|- ( ph -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) |
31 |
22 30
|
mpbid |
|- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) |
32 |
6
|
ffnd |
|- ( ph -> F Fn A ) |
33 |
|
simpr |
|- ( ( ( ph /\ a e. A ) /\ a = X ) -> a = X ) |
34 |
33
|
fveq2d |
|- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) = ( F ` X ) ) |
35 |
25 19 26
|
mrcssidd |
|- ( ph -> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
36 |
|
fvex |
|- ( F ` X ) e. _V |
37 |
36
|
snss |
|- ( ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
38 |
35 37
|
sylibr |
|- ( ph -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
39 |
38
|
ad2antrr |
|- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
40 |
34 39
|
eqeltrd |
|- ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
41 |
|
eldifsn |
|- ( a e. ( A \ { X } ) <-> ( a e. A /\ a =/= X ) ) |
42 |
2
|
fvexi |
|- .0. e. _V |
43 |
42
|
a1i |
|- ( ph -> .0. e. _V ) |
44 |
6 7 4 43
|
suppssr |
|- ( ( ph /\ a e. ( A \ { X } ) ) -> ( F ` a ) = .0. ) |
45 |
41 44
|
sylan2br |
|- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) = .0. ) |
46 |
2
|
subm0cl |
|- ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
47 |
28 46
|
syl |
|- ( ph -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
49 |
45 48
|
eqeltrd |
|- ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
50 |
49
|
anassrs |
|- ( ( ( ph /\ a e. A ) /\ a =/= X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
51 |
40 50
|
pm2.61dane |
|- ( ( ph /\ a e. A ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
52 |
51
|
ralrimiva |
|- ( ph -> A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
53 |
|
ffnfv |
|- ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> ( F Fn A /\ A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) |
54 |
32 52 53
|
sylanbrc |
|- ( ph -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
55 |
54
|
frnd |
|- ( ph -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) |
56 |
11
|
cntzidss |
|- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) /\ ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
57 |
31 55 56
|
syl2anc |
|- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
58 |
6
|
ffund |
|- ( ph -> Fun F ) |
59 |
|
snfi |
|- { X } e. Fin |
60 |
|
ssfi |
|- ( ( { X } e. Fin /\ ( F supp .0. ) C_ { X } ) -> ( F supp .0. ) e. Fin ) |
61 |
59 7 60
|
sylancr |
|- ( ph -> ( F supp .0. ) e. Fin ) |
62 |
6 4
|
fexd |
|- ( ph -> F e. _V ) |
63 |
|
isfsupp |
|- ( ( F e. _V /\ .0. e. _V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
64 |
62 43 63
|
syl2anc |
|- ( ph -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) ) |
65 |
58 61 64
|
mpbir2and |
|- ( ph -> F finSupp .0. ) |
66 |
1 2 11 3 4 6 57 7 65
|
gsumzres |
|- ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum F ) ) |
67 |
|
fveq2 |
|- ( a = X -> ( F ` a ) = ( F ` X ) ) |
68 |
1 67
|
gsumsn |
|- ( ( G e. Mnd /\ X e. A /\ ( F ` X ) e. B ) -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) |
69 |
3 5 12 68
|
syl3anc |
|- ( ph -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) |
70 |
10 66 69
|
3eqtr3d |
|- ( ph -> ( G gsum F ) = ( F ` X ) ) |