| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							gsumpt.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							gsumpt.z | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							gsumpt.g | 
							 |-  ( ph -> G e. Mnd )  | 
						
						
							| 4 | 
							
								
							 | 
							gsumpt.a | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 5 | 
							
								
							 | 
							gsumpt.x | 
							 |-  ( ph -> X e. A )  | 
						
						
							| 6 | 
							
								
							 | 
							gsumpt.f | 
							 |-  ( ph -> F : A --> B )  | 
						
						
							| 7 | 
							
								
							 | 
							gsumpt.s | 
							 |-  ( ph -> ( F supp .0. ) C_ { X } ) | 
						
						
							| 8 | 
							
								5
							 | 
							snssd | 
							 |-  ( ph -> { X } C_ A ) | 
						
						
							| 9 | 
							
								6 8
							 | 
							feqresmpt | 
							 |-  ( ph -> ( F |` { X } ) = ( a e. { X } |-> ( F ` a ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							oveq2d | 
							 |-  ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum ( a e. { X } |-> ( F ` a ) ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Cntz ` G ) = ( Cntz ` G )  | 
						
						
							| 12 | 
							
								6 5
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( F ` X ) e. B )  | 
						
						
							| 13 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 15 | 
							
								1 14 11
							 | 
							elcntzsn | 
							 |-  ( ( F ` X ) e. B -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) | 
						
						
							| 16 | 
							
								12 15
							 | 
							syl | 
							 |-  ( ph -> ( ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) <-> ( ( F ` X ) e. B /\ ( ( F ` X ) ( +g ` G ) ( F ` X ) ) = ( ( F ` X ) ( +g ` G ) ( F ` X ) ) ) ) ) | 
						
						
							| 17 | 
							
								12 13 16
							 | 
							mpbir2and | 
							 |-  ( ph -> ( F ` X ) e. ( ( Cntz ` G ) ` { ( F ` X ) } ) ) | 
						
						
							| 18 | 
							
								17
							 | 
							snssd | 
							 |-  ( ph -> { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 21 | 
							
								11 19 20
							 | 
							cntzspan | 
							 |-  ( ( G e. Mnd /\ { ( F ` X ) } C_ ( ( Cntz ` G ) ` { ( F ` X ) } ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) | 
						
						
							| 22 | 
							
								3 18 21
							 | 
							syl2anc | 
							 |-  ( ph -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd ) | 
						
						
							| 23 | 
							
								1
							 | 
							submacs | 
							 |-  ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) )  | 
						
						
							| 24 | 
							
								
							 | 
							acsmre | 
							 |-  ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) )  | 
						
						
							| 25 | 
							
								3 23 24
							 | 
							3syl | 
							 |-  ( ph -> ( SubMnd ` G ) e. ( Moore ` B ) )  | 
						
						
							| 26 | 
							
								12
							 | 
							snssd | 
							 |-  ( ph -> { ( F ` X ) } C_ B ) | 
						
						
							| 27 | 
							
								19
							 | 
							mrccl | 
							 |-  ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ { ( F ` X ) } C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) | 
						
						
							| 28 | 
							
								25 26 27
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) ) | 
						
						
							| 29 | 
							
								20 11
							 | 
							submcmn2 | 
							 |-  ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							 |-  ( ph -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) ) | 
						
						
							| 31 | 
							
								22 30
							 | 
							mpbid | 
							 |-  ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) | 
						
						
							| 32 | 
							
								6
							 | 
							ffnd | 
							 |-  ( ph -> F Fn A )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ a e. A ) /\ a = X ) -> a = X )  | 
						
						
							| 34 | 
							
								33
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) = ( F ` X ) )  | 
						
						
							| 35 | 
							
								25 19 26
							 | 
							mrcssidd | 
							 |-  ( ph -> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 36 | 
							
								
							 | 
							fvex | 
							 |-  ( F ` X ) e. _V  | 
						
						
							| 37 | 
							
								36
							 | 
							snss | 
							 |-  ( ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> { ( F ` X ) } C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 38 | 
							
								35 37
							 | 
							sylibr | 
							 |-  ( ph -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` X ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 40 | 
							
								34 39
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ a e. A ) /\ a = X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 41 | 
							
								
							 | 
							eldifsn | 
							 |-  ( a e. ( A \ { X } ) <-> ( a e. A /\ a =/= X ) ) | 
						
						
							| 42 | 
							
								2
							 | 
							fvexi | 
							 |-  .0. e. _V  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							 |-  ( ph -> .0. e. _V )  | 
						
						
							| 44 | 
							
								6 7 4 43
							 | 
							suppssr | 
							 |-  ( ( ph /\ a e. ( A \ { X } ) ) -> ( F ` a ) = .0. ) | 
						
						
							| 45 | 
							
								41 44
							 | 
							sylan2br | 
							 |-  ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) = .0. )  | 
						
						
							| 46 | 
							
								2
							 | 
							subm0cl | 
							 |-  ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) e. ( SubMnd ` G ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 47 | 
							
								28 46
							 | 
							syl | 
							 |-  ( ph -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 48 | 
							
								47
							 | 
							adantr | 
							 |-  ( ( ph /\ ( a e. A /\ a =/= X ) ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 49 | 
							
								45 48
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ ( a e. A /\ a =/= X ) ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 50 | 
							
								49
							 | 
							anassrs | 
							 |-  ( ( ( ph /\ a e. A ) /\ a =/= X ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 51 | 
							
								40 50
							 | 
							pm2.61dane | 
							 |-  ( ( ph /\ a e. A ) -> ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 52 | 
							
								51
							 | 
							ralrimiva | 
							 |-  ( ph -> A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 53 | 
							
								
							 | 
							ffnfv | 
							 |-  ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) <-> ( F Fn A /\ A. a e. A ( F ` a ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) ) | 
						
						
							| 54 | 
							
								32 52 53
							 | 
							sylanbrc | 
							 |-  ( ph -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 55 | 
							
								54
							 | 
							frnd | 
							 |-  ( ph -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) | 
						
						
							| 56 | 
							
								11
							 | 
							cntzidss | 
							 |-  ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) C_ ( ( Cntz ` G ) ` ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) /\ ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` { ( F ` X ) } ) ) -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) | 
						
						
							| 57 | 
							
								31 55 56
							 | 
							syl2anc | 
							 |-  ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) )  | 
						
						
							| 58 | 
							
								6
							 | 
							ffund | 
							 |-  ( ph -> Fun F )  | 
						
						
							| 59 | 
							
								
							 | 
							snfi | 
							 |-  { X } e. Fin | 
						
						
							| 60 | 
							
								
							 | 
							ssfi | 
							 |-  ( ( { X } e. Fin /\ ( F supp .0. ) C_ { X } ) -> ( F supp .0. ) e. Fin ) | 
						
						
							| 61 | 
							
								59 7 60
							 | 
							sylancr | 
							 |-  ( ph -> ( F supp .0. ) e. Fin )  | 
						
						
							| 62 | 
							
								6 4
							 | 
							fexd | 
							 |-  ( ph -> F e. _V )  | 
						
						
							| 63 | 
							
								
							 | 
							isfsupp | 
							 |-  ( ( F e. _V /\ .0. e. _V ) -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) )  | 
						
						
							| 64 | 
							
								62 43 63
							 | 
							syl2anc | 
							 |-  ( ph -> ( F finSupp .0. <-> ( Fun F /\ ( F supp .0. ) e. Fin ) ) )  | 
						
						
							| 65 | 
							
								58 61 64
							 | 
							mpbir2and | 
							 |-  ( ph -> F finSupp .0. )  | 
						
						
							| 66 | 
							
								1 2 11 3 4 6 57 7 65
							 | 
							gsumzres | 
							 |-  ( ph -> ( G gsum ( F |` { X } ) ) = ( G gsum F ) ) | 
						
						
							| 67 | 
							
								
							 | 
							fveq2 | 
							 |-  ( a = X -> ( F ` a ) = ( F ` X ) )  | 
						
						
							| 68 | 
							
								1 67
							 | 
							gsumsn | 
							 |-  ( ( G e. Mnd /\ X e. A /\ ( F ` X ) e. B ) -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) | 
						
						
							| 69 | 
							
								3 5 12 68
							 | 
							syl3anc | 
							 |-  ( ph -> ( G gsum ( a e. { X } |-> ( F ` a ) ) ) = ( F ` X ) ) | 
						
						
							| 70 | 
							
								10 66 69
							 | 
							3eqtr3d | 
							 |-  ( ph -> ( G gsum F ) = ( F ` X ) )  |