Metamath Proof Explorer


Theorem gsumres

Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b
|- B = ( Base ` G )
gsumcl.z
|- .0. = ( 0g ` G )
gsumcl.g
|- ( ph -> G e. CMnd )
gsumcl.a
|- ( ph -> A e. V )
gsumcl.f
|- ( ph -> F : A --> B )
gsumres.s
|- ( ph -> ( F supp .0. ) C_ W )
gsumres.w
|- ( ph -> F finSupp .0. )
Assertion gsumres
|- ( ph -> ( G gsum ( F |` W ) ) = ( G gsum F ) )

Proof

Step Hyp Ref Expression
1 gsumcl.b
 |-  B = ( Base ` G )
2 gsumcl.z
 |-  .0. = ( 0g ` G )
3 gsumcl.g
 |-  ( ph -> G e. CMnd )
4 gsumcl.a
 |-  ( ph -> A e. V )
5 gsumcl.f
 |-  ( ph -> F : A --> B )
6 gsumres.s
 |-  ( ph -> ( F supp .0. ) C_ W )
7 gsumres.w
 |-  ( ph -> F finSupp .0. )
8 eqid
 |-  ( Cntz ` G ) = ( Cntz ` G )
9 cmnmnd
 |-  ( G e. CMnd -> G e. Mnd )
10 3 9 syl
 |-  ( ph -> G e. Mnd )
11 1 8 3 5 cntzcmnf
 |-  ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) )
12 1 2 8 10 4 5 11 6 7 gsumzres
 |-  ( ph -> ( G gsum ( F |` W ) ) = ( G gsum F ) )