| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumress.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumress.o |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | gsumress.h |  |-  H = ( G |`s S ) | 
						
							| 4 |  | gsumress.g |  |-  ( ph -> G e. V ) | 
						
							| 5 |  | gsumress.a |  |-  ( ph -> A e. X ) | 
						
							| 6 |  | gsumress.s |  |-  ( ph -> S C_ B ) | 
						
							| 7 |  | gsumress.f |  |-  ( ph -> F : A --> S ) | 
						
							| 8 |  | gsumress.z |  |-  ( ph -> .0. e. S ) | 
						
							| 9 |  | gsumress.c |  |-  ( ( ph /\ x e. B ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) | 
						
							| 10 |  | oveq1 |  |-  ( y = .0. -> ( y .+ x ) = ( .0. .+ x ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( y = .0. -> ( ( y .+ x ) = x <-> ( .0. .+ x ) = x ) ) | 
						
							| 12 | 11 | ovanraleqv |  |-  ( y = .0. -> ( A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) | 
						
							| 13 | 6 8 | sseldd |  |-  ( ph -> .0. e. B ) | 
						
							| 14 | 9 | ralrimiva |  |-  ( ph -> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) | 
						
							| 15 | 12 13 14 | elrabd |  |-  ( ph -> .0. e. { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) | 
						
							| 16 | 15 | snssd |  |-  ( ph -> { .0. } C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 18 |  | eqid |  |-  { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } | 
						
							| 19 | 1 17 2 18 | mgmidsssn0 |  |-  ( G e. V -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { ( 0g ` G ) } ) | 
						
							| 20 | 4 19 | syl |  |-  ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { ( 0g ` G ) } ) | 
						
							| 21 | 20 15 | sseldd |  |-  ( ph -> .0. e. { ( 0g ` G ) } ) | 
						
							| 22 |  | elsni |  |-  ( .0. e. { ( 0g ` G ) } -> .0. = ( 0g ` G ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> .0. = ( 0g ` G ) ) | 
						
							| 24 | 23 | sneqd |  |-  ( ph -> { .0. } = { ( 0g ` G ) } ) | 
						
							| 25 | 20 24 | sseqtrrd |  |-  ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { .0. } ) | 
						
							| 26 | 16 25 | eqssd |  |-  ( ph -> { .0. } = { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) | 
						
							| 27 | 11 | ovanraleqv |  |-  ( y = .0. -> ( A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. S ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) | 
						
							| 28 | 6 | sselda |  |-  ( ( ph /\ x e. S ) -> x e. B ) | 
						
							| 29 | 28 9 | syldan |  |-  ( ( ph /\ x e. S ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) | 
						
							| 30 | 29 | ralrimiva |  |-  ( ph -> A. x e. S ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) | 
						
							| 31 | 27 8 30 | elrabd |  |-  ( ph -> .0. e. { y e. S | A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) | 
						
							| 32 | 3 1 | ressbas2 |  |-  ( S C_ B -> S = ( Base ` H ) ) | 
						
							| 33 | 6 32 | syl |  |-  ( ph -> S = ( Base ` H ) ) | 
						
							| 34 |  | fvex |  |-  ( Base ` H ) e. _V | 
						
							| 35 | 33 34 | eqeltrdi |  |-  ( ph -> S e. _V ) | 
						
							| 36 | 3 2 | ressplusg |  |-  ( S e. _V -> .+ = ( +g ` H ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> .+ = ( +g ` H ) ) | 
						
							| 38 | 37 | oveqd |  |-  ( ph -> ( y .+ x ) = ( y ( +g ` H ) x ) ) | 
						
							| 39 | 38 | eqeq1d |  |-  ( ph -> ( ( y .+ x ) = x <-> ( y ( +g ` H ) x ) = x ) ) | 
						
							| 40 | 37 | oveqd |  |-  ( ph -> ( x .+ y ) = ( x ( +g ` H ) y ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( ph -> ( ( x .+ y ) = x <-> ( x ( +g ` H ) y ) = x ) ) | 
						
							| 42 | 39 41 | anbi12d |  |-  ( ph -> ( ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) ) ) | 
						
							| 43 | 33 42 | raleqbidv |  |-  ( ph -> ( A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) ) ) | 
						
							| 44 | 33 43 | rabeqbidv |  |-  ( ph -> { y e. S | A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) | 
						
							| 45 | 31 44 | eleqtrd |  |-  ( ph -> .0. e. { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) | 
						
							| 46 | 45 | snssd |  |-  ( ph -> { .0. } C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) | 
						
							| 47 | 3 | ovexi |  |-  H e. _V | 
						
							| 48 | 47 | a1i |  |-  ( ph -> H e. _V ) | 
						
							| 49 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 50 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 51 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 52 |  | eqid |  |-  { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } | 
						
							| 53 | 49 50 51 52 | mgmidsssn0 |  |-  ( H e. _V -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { ( 0g ` H ) } ) | 
						
							| 54 | 48 53 | syl |  |-  ( ph -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { ( 0g ` H ) } ) | 
						
							| 55 | 54 45 | sseldd |  |-  ( ph -> .0. e. { ( 0g ` H ) } ) | 
						
							| 56 |  | elsni |  |-  ( .0. e. { ( 0g ` H ) } -> .0. = ( 0g ` H ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ph -> .0. = ( 0g ` H ) ) | 
						
							| 58 | 57 | sneqd |  |-  ( ph -> { .0. } = { ( 0g ` H ) } ) | 
						
							| 59 | 54 58 | sseqtrrd |  |-  ( ph -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { .0. } ) | 
						
							| 60 | 46 59 | eqssd |  |-  ( ph -> { .0. } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) | 
						
							| 61 | 26 60 | eqtr3d |  |-  ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) | 
						
							| 62 | 61 | sseq2d |  |-  ( ph -> ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } <-> ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) | 
						
							| 63 | 23 57 | eqtr3d |  |-  ( ph -> ( 0g ` G ) = ( 0g ` H ) ) | 
						
							| 64 | 37 | seqeq2d |  |-  ( ph -> seq m ( .+ , F ) = seq m ( ( +g ` H ) , F ) ) | 
						
							| 65 | 64 | fveq1d |  |-  ( ph -> ( seq m ( .+ , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) | 
						
							| 66 | 65 | eqeq2d |  |-  ( ph -> ( z = ( seq m ( .+ , F ) ` n ) <-> z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) | 
						
							| 67 | 66 | anbi2d |  |-  ( ph -> ( ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 68 | 67 | rexbidv |  |-  ( ph -> ( E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 69 | 68 | exbidv |  |-  ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 70 | 69 | iotabidv |  |-  ( ph -> ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) = ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) | 
						
							| 71 | 37 | seqeq2d |  |-  ( ph -> seq 1 ( .+ , ( F o. f ) ) = seq 1 ( ( +g ` H ) , ( F o. f ) ) ) | 
						
							| 72 | 71 | fveq1d |  |-  ( ph -> ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 73 | 72 | eqeq2d |  |-  ( ph -> ( z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) <-> z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) | 
						
							| 74 | 73 | anbi2d |  |-  ( ph -> ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) <-> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) | 
						
							| 75 | 74 | exbidv |  |-  ( ph -> ( E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) <-> E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) | 
						
							| 76 | 75 | iotabidv |  |-  ( ph -> ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) = ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) | 
						
							| 77 | 70 76 | ifeq12d |  |-  ( ph -> if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) = if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) | 
						
							| 78 | 62 63 77 | ifbieq12d |  |-  ( ph -> if ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } , ( 0g ` G ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) = if ( ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } , ( 0g ` H ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) | 
						
							| 79 | 26 | difeq2d |  |-  ( ph -> ( _V \ { .0. } ) = ( _V \ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) ) | 
						
							| 80 | 79 | imaeq2d |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( `' F " ( _V \ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) ) ) | 
						
							| 81 | 7 6 | fssd |  |-  ( ph -> F : A --> B ) | 
						
							| 82 | 1 17 2 18 80 4 5 81 | gsumval |  |-  ( ph -> ( G gsum F ) = if ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } , ( 0g ` G ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) | 
						
							| 83 | 60 | difeq2d |  |-  ( ph -> ( _V \ { .0. } ) = ( _V \ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) | 
						
							| 84 | 83 | imaeq2d |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( `' F " ( _V \ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) ) | 
						
							| 85 | 33 | feq3d |  |-  ( ph -> ( F : A --> S <-> F : A --> ( Base ` H ) ) ) | 
						
							| 86 | 7 85 | mpbid |  |-  ( ph -> F : A --> ( Base ` H ) ) | 
						
							| 87 | 49 50 51 52 84 48 5 86 | gsumval |  |-  ( ph -> ( H gsum F ) = if ( ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } , ( 0g ` H ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) | 
						
							| 88 | 78 82 87 | 3eqtr4d |  |-  ( ph -> ( G gsum F ) = ( H gsum F ) ) |