Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwcl.b |
|- B = ( Base ` G ) |
2 |
|
gsumsgrpccat.p |
|- .+ = ( +g ` G ) |
3 |
|
simp1 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> G e. Smgrp ) |
4 |
|
sgrpmgm |
|- ( G e. Smgrp -> G e. Mgm ) |
5 |
1 2
|
mgmcl |
|- ( ( G e. Mgm /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
6 |
4 5
|
syl3an1 |
|- ( ( G e. Smgrp /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
7 |
6
|
3expb |
|- ( ( G e. Smgrp /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
8 |
3 7
|
sylan |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
9 |
1 2
|
sgrpass |
|- ( ( G e. Smgrp /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
10 |
3 9
|
sylan |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
11 |
|
lennncl |
|- ( ( W e. Word B /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
12 |
11
|
ad2ant2r |
|- ( ( ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. NN ) |
13 |
12
|
3adant1 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. NN ) |
14 |
13
|
nnzd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. ZZ ) |
15 |
14
|
uzidd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. ( ZZ>= ` ( # ` W ) ) ) |
16 |
|
lennncl |
|- ( ( X e. Word B /\ X =/= (/) ) -> ( # ` X ) e. NN ) |
17 |
16
|
ad2ant2l |
|- ( ( ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. NN ) |
18 |
17
|
3adant1 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. NN ) |
19 |
|
nnm1nn0 |
|- ( ( # ` X ) e. NN -> ( ( # ` X ) - 1 ) e. NN0 ) |
20 |
18 19
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` X ) - 1 ) e. NN0 ) |
21 |
|
uzaddcl |
|- ( ( ( # ` W ) e. ( ZZ>= ` ( # ` W ) ) /\ ( ( # ` X ) - 1 ) e. NN0 ) -> ( ( # ` W ) + ( ( # ` X ) - 1 ) ) e. ( ZZ>= ` ( # ` W ) ) ) |
22 |
15 20 21
|
syl2anc |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( ( # ` X ) - 1 ) ) e. ( ZZ>= ` ( # ` W ) ) ) |
23 |
13
|
nncnd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. CC ) |
24 |
18
|
nncnd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. CC ) |
25 |
|
1cnd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> 1 e. CC ) |
26 |
23 24 25
|
addsubassd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( # ` W ) + ( ( # ` X ) - 1 ) ) ) |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ 1 e. CC ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
29 |
23 27 28
|
sylancl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
30 |
29
|
fveq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ZZ>= ` ( ( ( # ` W ) - 1 ) + 1 ) ) = ( ZZ>= ` ( # ` W ) ) ) |
31 |
22 26 30
|
3eltr4d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. ( ZZ>= ` ( ( ( # ` W ) - 1 ) + 1 ) ) ) |
32 |
|
nnm1nn0 |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. NN0 ) |
33 |
13 32
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
34 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
35 |
33 34
|
eleqtrdi |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) |
36 |
|
ccatcl |
|- ( ( W e. Word B /\ X e. Word B ) -> ( W ++ X ) e. Word B ) |
37 |
36
|
3ad2ant2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) e. Word B ) |
38 |
|
wrdf |
|- ( ( W ++ X ) e. Word B -> ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B ) |
39 |
37 38
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B ) |
40 |
|
ccatlen |
|- ( ( W e. Word B /\ X e. Word B ) -> ( # ` ( W ++ X ) ) = ( ( # ` W ) + ( # ` X ) ) ) |
41 |
40
|
3ad2ant2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` ( W ++ X ) ) = ( ( # ` W ) + ( # ` X ) ) ) |
42 |
41
|
oveq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` ( W ++ X ) ) ) = ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) ) |
43 |
18
|
nnzd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. ZZ ) |
44 |
14 43
|
zaddcld |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) e. ZZ ) |
45 |
|
fzoval |
|- ( ( ( # ` W ) + ( # ` X ) ) e. ZZ -> ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
46 |
44 45
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
47 |
42 46
|
eqtrd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` ( W ++ X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
48 |
47
|
feq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B <-> ( W ++ X ) : ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) --> B ) ) |
49 |
39 48
|
mpbid |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) : ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) --> B ) |
50 |
49
|
ffvelrnda |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) -> ( ( W ++ X ) ` x ) e. B ) |
51 |
8 10 31 35 50
|
seqsplit |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) .+ ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) ) |
52 |
|
simpl2l |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> W e. Word B ) |
53 |
|
simpl2r |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> X e. Word B ) |
54 |
|
fzoval |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
55 |
14 54
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
56 |
55
|
eleq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( x e. ( 0 ..^ ( # ` W ) ) <-> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) ) |
57 |
56
|
biimpar |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
58 |
|
ccatval1 |
|- ( ( W e. Word B /\ X e. Word B /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ X ) ` x ) = ( W ` x ) ) |
59 |
52 53 57 58
|
syl3anc |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( ( W ++ X ) ` x ) = ( W ` x ) ) |
60 |
35 59
|
seqfveq |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) = ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) ) |
61 |
23
|
addid2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 + ( # ` W ) ) = ( # ` W ) ) |
62 |
29 61
|
eqtr4d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( 0 + ( # ` W ) ) ) |
63 |
62
|
seqeq1d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) = seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ) |
64 |
23 24
|
addcomd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) = ( ( # ` X ) + ( # ` W ) ) ) |
65 |
64
|
oveq1d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( ( # ` X ) + ( # ` W ) ) - 1 ) ) |
66 |
24 23 25
|
addsubd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` X ) + ( # ` W ) ) - 1 ) = ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) |
67 |
65 66
|
eqtrd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) |
68 |
63 67
|
fveq12d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) ) |
69 |
20 34
|
eleqtrdi |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` X ) - 1 ) e. ( ZZ>= ` 0 ) ) |
70 |
|
simpl2l |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> W e. Word B ) |
71 |
|
simpl2r |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> X e. Word B ) |
72 |
|
fzoval |
|- ( ( # ` X ) e. ZZ -> ( 0 ..^ ( # ` X ) ) = ( 0 ... ( ( # ` X ) - 1 ) ) ) |
73 |
43 72
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` X ) ) = ( 0 ... ( ( # ` X ) - 1 ) ) ) |
74 |
73
|
eleq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( x e. ( 0 ..^ ( # ` X ) ) <-> x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) ) |
75 |
74
|
biimpar |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> x e. ( 0 ..^ ( # ` X ) ) ) |
76 |
|
ccatval3 |
|- ( ( W e. Word B /\ X e. Word B /\ x e. ( 0 ..^ ( # ` X ) ) ) -> ( ( W ++ X ) ` ( x + ( # ` W ) ) ) = ( X ` x ) ) |
77 |
70 71 75 76
|
syl3anc |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> ( ( W ++ X ) ` ( x + ( # ` W ) ) ) = ( X ` x ) ) |
78 |
77
|
eqcomd |
|- ( ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> ( X ` x ) = ( ( W ++ X ) ` ( x + ( # ` W ) ) ) ) |
79 |
69 14 78
|
seqshft2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) = ( seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) ) |
80 |
68 79
|
eqtr4d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) |
81 |
60 80
|
oveq12d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) .+ ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
82 |
51 81
|
eqtrd |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
83 |
13 18
|
nnaddcld |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) e. NN ) |
84 |
|
nnm1nn0 |
|- ( ( ( # ` W ) + ( # ` X ) ) e. NN -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. NN0 ) |
85 |
83 84
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. NN0 ) |
86 |
85 34
|
eleqtrdi |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. ( ZZ>= ` 0 ) ) |
87 |
1 2 3 86 49
|
gsumval2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum ( W ++ X ) ) = ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
88 |
|
simp2l |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W e. Word B ) |
89 |
|
wrdf |
|- ( W e. Word B -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
90 |
88 89
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
91 |
55
|
feq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W : ( 0 ..^ ( # ` W ) ) --> B <-> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) ) |
92 |
90 91
|
mpbid |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) |
93 |
1 2 3 35 92
|
gsumval2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum W ) = ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) ) |
94 |
|
simp2r |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X e. Word B ) |
95 |
|
wrdf |
|- ( X e. Word B -> X : ( 0 ..^ ( # ` X ) ) --> B ) |
96 |
94 95
|
syl |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X : ( 0 ..^ ( # ` X ) ) --> B ) |
97 |
73
|
feq2d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( X : ( 0 ..^ ( # ` X ) ) --> B <-> X : ( 0 ... ( ( # ` X ) - 1 ) ) --> B ) ) |
98 |
96 97
|
mpbid |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X : ( 0 ... ( ( # ` X ) - 1 ) ) --> B ) |
99 |
1 2 3 69 98
|
gsumval2 |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum X ) = ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) |
100 |
93 99
|
oveq12d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
101 |
82 87 100
|
3eqtr4d |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |