Metamath Proof Explorer


Theorem gsumsn

Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsn.b
|- B = ( Base ` G )
gsumsn.s
|- ( k = M -> A = C )
Assertion gsumsn
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C )

Proof

Step Hyp Ref Expression
1 gsumsn.b
 |-  B = ( Base ` G )
2 gsumsn.s
 |-  ( k = M -> A = C )
3 nfcv
 |-  F/_ k C
4 3 1 2 gsumsnf
 |-  ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C )