Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsn.b | |- B = ( Base ` G ) |
|
| gsumsn.s | |- ( k = M -> A = C ) |
||
| Assertion | gsumsn | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsn.b | |- B = ( Base ` G ) |
|
| 2 | gsumsn.s | |- ( k = M -> A = C ) |
|
| 3 | nfcv | |- F/_ k C |
|
| 4 | 3 1 2 | gsumsnf | |- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C ) |