Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsnd.b | |- B = ( Base ` G ) |
|
| gsumsnd.g | |- ( ph -> G e. Mnd ) |
||
| gsumsnd.m | |- ( ph -> M e. V ) |
||
| gsumsnd.c | |- ( ph -> C e. B ) |
||
| gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
||
| Assertion | gsumsnd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsnd.b | |- B = ( Base ` G ) |
|
| 2 | gsumsnd.g | |- ( ph -> G e. Mnd ) |
|
| 3 | gsumsnd.m | |- ( ph -> M e. V ) |
|
| 4 | gsumsnd.c | |- ( ph -> C e. B ) |
|
| 5 | gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
|
| 6 | nfv | |- F/ k ph |
|
| 7 | nfcv | |- F/_ k C |
|
| 8 | 1 2 3 4 5 6 7 | gsumsnfd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |