Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsnd.b | |- B = ( Base ` G ) |
|
gsumsnd.g | |- ( ph -> G e. Mnd ) |
||
gsumsnd.m | |- ( ph -> M e. V ) |
||
gsumsnd.c | |- ( ph -> C e. B ) |
||
gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
||
Assertion | gsumsnd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsnd.b | |- B = ( Base ` G ) |
|
2 | gsumsnd.g | |- ( ph -> G e. Mnd ) |
|
3 | gsumsnd.m | |- ( ph -> M e. V ) |
|
4 | gsumsnd.c | |- ( ph -> C e. B ) |
|
5 | gsumsnd.s | |- ( ( ph /\ k = M ) -> A = C ) |
|
6 | nfv | |- F/ k ph |
|
7 | nfcv | |- F/_ k C |
|
8 | 1 2 3 4 5 6 7 | gsumsnfd | |- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |