Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumsnf
Metamath Proof Explorer
Description: Group sum of a singleton, using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Mario Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018) (Proof
shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumsnf.c
|- F/_ k C
gsumsnf.b
|- B = ( Base ` G )
gsumsnf.s
|- ( k = M -> A = C )
Assertion
gsumsnf
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C )
Proof
Step
Hyp
Ref
Expression
1
gsumsnf.c
|- F/_ k C
2
gsumsnf.b
|- B = ( Base ` G )
3
gsumsnf.s
|- ( k = M -> A = C )
4
simp1
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> G e. Mnd )
5
simp2
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> M e. V )
6
simp3
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> C e. B )
7
3
adantl
|- ( ( ( G e. Mnd /\ M e. V /\ C e. B ) /\ k = M ) -> A = C )
8
nfv
|- F/ k G e. Mnd
9
nfv
|- F/ k M e. V
10
1
nfel1
|- F/ k C e. B
11
8 9 10
nf3an
|- F/ k ( G e. Mnd /\ M e. V /\ C e. B )
12
2 4 5 6 7 11 1
gsumsnfd
|- ( ( G e. Mnd /\ M e. V /\ C e. B ) -> ( G gsum ( k e. { M } |-> A ) ) = C )