Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsnd.b |
|- B = ( Base ` G ) |
2 |
|
gsumsnd.g |
|- ( ph -> G e. Mnd ) |
3 |
|
gsumsnd.m |
|- ( ph -> M e. V ) |
4 |
|
gsumsnd.c |
|- ( ph -> C e. B ) |
5 |
|
gsumsnd.s |
|- ( ( ph /\ k = M ) -> A = C ) |
6 |
|
gsumsnfd.p |
|- F/ k ph |
7 |
|
gsumsnfd.c |
|- F/_ k C |
8 |
|
elsni |
|- ( k e. { M } -> k = M ) |
9 |
8 5
|
sylan2 |
|- ( ( ph /\ k e. { M } ) -> A = C ) |
10 |
6 9
|
mpteq2da |
|- ( ph -> ( k e. { M } |-> A ) = ( k e. { M } |-> C ) ) |
11 |
10
|
oveq2d |
|- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = ( G gsum ( k e. { M } |-> C ) ) ) |
12 |
|
snfi |
|- { M } e. Fin |
13 |
12
|
a1i |
|- ( ph -> { M } e. Fin ) |
14 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
15 |
7 1 14
|
gsumconstf |
|- ( ( G e. Mnd /\ { M } e. Fin /\ C e. B ) -> ( G gsum ( k e. { M } |-> C ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
16 |
2 13 4 15
|
syl3anc |
|- ( ph -> ( G gsum ( k e. { M } |-> C ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
17 |
11 16
|
eqtrd |
|- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = ( ( # ` { M } ) ( .g ` G ) C ) ) |
18 |
|
hashsng |
|- ( M e. V -> ( # ` { M } ) = 1 ) |
19 |
3 18
|
syl |
|- ( ph -> ( # ` { M } ) = 1 ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( # ` { M } ) ( .g ` G ) C ) = ( 1 ( .g ` G ) C ) ) |
21 |
1 14
|
mulg1 |
|- ( C e. B -> ( 1 ( .g ` G ) C ) = C ) |
22 |
4 21
|
syl |
|- ( ph -> ( 1 ( .g ` G ) C ) = C ) |
23 |
17 20 22
|
3eqtrd |
|- ( ph -> ( G gsum ( k e. { M } |-> A ) ) = C ) |