Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumsplit.b | |- B = ( Base ` G ) |
|
| gsumsplit.z | |- .0. = ( 0g ` G ) |
||
| gsumsplit.p | |- .+ = ( +g ` G ) |
||
| gsumsplit.g | |- ( ph -> G e. CMnd ) |
||
| gsumsplit.a | |- ( ph -> A e. V ) |
||
| gsumsplit.f | |- ( ph -> F : A --> B ) |
||
| gsumsplit.w | |- ( ph -> F finSupp .0. ) |
||
| gsumsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
| gsumsplit.u | |- ( ph -> A = ( C u. D ) ) |
||
| Assertion | gsumsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit.b | |- B = ( Base ` G ) |
|
| 2 | gsumsplit.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumsplit.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumsplit.g | |- ( ph -> G e. CMnd ) |
|
| 5 | gsumsplit.a | |- ( ph -> A e. V ) |
|
| 6 | gsumsplit.f | |- ( ph -> F : A --> B ) |
|
| 7 | gsumsplit.w | |- ( ph -> F finSupp .0. ) |
|
| 8 | gsumsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
| 9 | gsumsplit.u | |- ( ph -> A = ( C u. D ) ) |
|
| 10 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 11 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. Mnd ) |
| 13 | 1 10 4 6 | cntzcmnf | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 14 | 1 2 3 10 12 5 6 13 7 8 9 | gsumzsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |