Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumsplit.b | |- B = ( Base ` G ) |
|
gsumsplit.z | |- .0. = ( 0g ` G ) |
||
gsumsplit.p | |- .+ = ( +g ` G ) |
||
gsumsplit.g | |- ( ph -> G e. CMnd ) |
||
gsumsplit.a | |- ( ph -> A e. V ) |
||
gsumsplit.f | |- ( ph -> F : A --> B ) |
||
gsumsplit.w | |- ( ph -> F finSupp .0. ) |
||
gsumsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
gsumsplit.u | |- ( ph -> A = ( C u. D ) ) |
||
Assertion | gsumsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit.b | |- B = ( Base ` G ) |
|
2 | gsumsplit.z | |- .0. = ( 0g ` G ) |
|
3 | gsumsplit.p | |- .+ = ( +g ` G ) |
|
4 | gsumsplit.g | |- ( ph -> G e. CMnd ) |
|
5 | gsumsplit.a | |- ( ph -> A e. V ) |
|
6 | gsumsplit.f | |- ( ph -> F : A --> B ) |
|
7 | gsumsplit.w | |- ( ph -> F finSupp .0. ) |
|
8 | gsumsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
9 | gsumsplit.u | |- ( ph -> A = ( C u. D ) ) |
|
10 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
11 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
12 | 4 11 | syl | |- ( ph -> G e. Mnd ) |
13 | 1 10 4 6 | cntzcmnf | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
14 | 1 2 3 10 12 5 6 13 7 8 9 | gsumzsplit | |- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |