Metamath Proof Explorer


Theorem gsumsplit

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit.b
|- B = ( Base ` G )
gsumsplit.z
|- .0. = ( 0g ` G )
gsumsplit.p
|- .+ = ( +g ` G )
gsumsplit.g
|- ( ph -> G e. CMnd )
gsumsplit.a
|- ( ph -> A e. V )
gsumsplit.f
|- ( ph -> F : A --> B )
gsumsplit.w
|- ( ph -> F finSupp .0. )
gsumsplit.i
|- ( ph -> ( C i^i D ) = (/) )
gsumsplit.u
|- ( ph -> A = ( C u. D ) )
Assertion gsumsplit
|- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumsplit.b
 |-  B = ( Base ` G )
2 gsumsplit.z
 |-  .0. = ( 0g ` G )
3 gsumsplit.p
 |-  .+ = ( +g ` G )
4 gsumsplit.g
 |-  ( ph -> G e. CMnd )
5 gsumsplit.a
 |-  ( ph -> A e. V )
6 gsumsplit.f
 |-  ( ph -> F : A --> B )
7 gsumsplit.w
 |-  ( ph -> F finSupp .0. )
8 gsumsplit.i
 |-  ( ph -> ( C i^i D ) = (/) )
9 gsumsplit.u
 |-  ( ph -> A = ( C u. D ) )
10 eqid
 |-  ( Cntz ` G ) = ( Cntz ` G )
11 cmnmnd
 |-  ( G e. CMnd -> G e. Mnd )
12 4 11 syl
 |-  ( ph -> G e. Mnd )
13 1 10 4 6 cntzcmnf
 |-  ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) )
14 1 2 3 10 12 5 6 13 7 8 9 gsumzsplit
 |-  ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) )