Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsplit1r.b |
|- B = ( Base ` G ) |
2 |
|
gsumsplit1r.p |
|- .+ = ( +g ` G ) |
3 |
|
gsumsplit1r.g |
|- ( ph -> G e. V ) |
4 |
|
gsumsplit1r.m |
|- ( ph -> M e. ZZ ) |
5 |
|
gsumsplit1r.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
6 |
|
gsumsplit1r.f |
|- ( ph -> F : ( M ... ( N + 1 ) ) --> B ) |
7 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
8 |
5 7
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
9 |
1 2 3 8 6
|
gsumval2 |
|- ( ph -> ( G gsum F ) = ( seq M ( .+ , F ) ` ( N + 1 ) ) ) |
10 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
11 |
5 10
|
syl |
|- ( ph -> ( seq M ( .+ , F ) ` ( N + 1 ) ) = ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) ) |
12 |
|
fzssp1 |
|- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
13 |
12
|
a1i |
|- ( ph -> ( M ... N ) C_ ( M ... ( N + 1 ) ) ) |
14 |
6 13
|
fssresd |
|- ( ph -> ( F |` ( M ... N ) ) : ( M ... N ) --> B ) |
15 |
1 2 3 5 14
|
gsumval2 |
|- ( ph -> ( G gsum ( F |` ( M ... N ) ) ) = ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` N ) ) |
16 |
4
|
uzidd |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
17 |
|
seq1 |
|- ( M e. ZZ -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( ( F |` ( M ... N ) ) ` M ) ) |
18 |
4 17
|
syl |
|- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( ( F |` ( M ... N ) ) ` M ) ) |
19 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
20 |
5 19
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
21 |
20
|
fvresd |
|- ( ph -> ( ( F |` ( M ... N ) ) ` M ) = ( F ` M ) ) |
22 |
18 21
|
eqtrd |
|- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` M ) = ( F ` M ) ) |
23 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
24 |
4 23
|
syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
25 |
24
|
sselda |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> x e. ( M ... N ) ) |
26 |
25
|
fvresd |
|- ( ( ph /\ x e. ( ( M + 1 ) ... N ) ) -> ( ( F |` ( M ... N ) ) ` x ) = ( F ` x ) ) |
27 |
16 22 5 26
|
seqfveq2 |
|- ( ph -> ( seq M ( .+ , ( F |` ( M ... N ) ) ) ` N ) = ( seq M ( .+ , F ) ` N ) ) |
28 |
15 27
|
eqtr2d |
|- ( ph -> ( seq M ( .+ , F ) ` N ) = ( G gsum ( F |` ( M ... N ) ) ) ) |
29 |
28
|
oveq1d |
|- ( ph -> ( ( seq M ( .+ , F ) ` N ) .+ ( F ` ( N + 1 ) ) ) = ( ( G gsum ( F |` ( M ... N ) ) ) .+ ( F ` ( N + 1 ) ) ) ) |
30 |
9 11 29
|
3eqtrd |
|- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` ( M ... N ) ) ) .+ ( F ` ( N + 1 ) ) ) ) |