| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsplit2.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumsplit2.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumsplit2.p |
|- .+ = ( +g ` G ) |
| 4 |
|
gsumsplit2.g |
|- ( ph -> G e. CMnd ) |
| 5 |
|
gsumsplit2.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsumsplit2.f |
|- ( ( ph /\ k e. A ) -> X e. B ) |
| 7 |
|
gsumsplit2.w |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
| 8 |
|
gsumsplit2.i |
|- ( ph -> ( C i^i D ) = (/) ) |
| 9 |
|
gsumsplit2.u |
|- ( ph -> A = ( C u. D ) ) |
| 10 |
6
|
fmpttd |
|- ( ph -> ( k e. A |-> X ) : A --> B ) |
| 11 |
1 2 3 4 5 10 7 8 9
|
gsumsplit |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) ) |
| 12 |
|
ssun1 |
|- C C_ ( C u. D ) |
| 13 |
12 9
|
sseqtrrid |
|- ( ph -> C C_ A ) |
| 14 |
13
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` C ) = ( k e. C |-> X ) ) |
| 15 |
14
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` C ) ) = ( G gsum ( k e. C |-> X ) ) ) |
| 16 |
|
ssun2 |
|- D C_ ( C u. D ) |
| 17 |
16 9
|
sseqtrrid |
|- ( ph -> D C_ A ) |
| 18 |
17
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` D ) = ( k e. D |-> X ) ) |
| 19 |
18
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` D ) ) = ( G gsum ( k e. D |-> X ) ) ) |
| 20 |
15 19
|
oveq12d |
|- ( ph -> ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |
| 21 |
11 20
|
eqtrd |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |