Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsplit2.b |
|- B = ( Base ` G ) |
2 |
|
gsumsplit2.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsumsplit2.p |
|- .+ = ( +g ` G ) |
4 |
|
gsumsplit2.g |
|- ( ph -> G e. CMnd ) |
5 |
|
gsumsplit2.a |
|- ( ph -> A e. V ) |
6 |
|
gsumsplit2.f |
|- ( ( ph /\ k e. A ) -> X e. B ) |
7 |
|
gsumsplit2.w |
|- ( ph -> ( k e. A |-> X ) finSupp .0. ) |
8 |
|
gsumsplit2.i |
|- ( ph -> ( C i^i D ) = (/) ) |
9 |
|
gsumsplit2.u |
|- ( ph -> A = ( C u. D ) ) |
10 |
6
|
fmpttd |
|- ( ph -> ( k e. A |-> X ) : A --> B ) |
11 |
1 2 3 4 5 10 7 8 9
|
gsumsplit |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) ) |
12 |
|
ssun1 |
|- C C_ ( C u. D ) |
13 |
12 9
|
sseqtrrid |
|- ( ph -> C C_ A ) |
14 |
13
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` C ) = ( k e. C |-> X ) ) |
15 |
14
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` C ) ) = ( G gsum ( k e. C |-> X ) ) ) |
16 |
|
ssun2 |
|- D C_ ( C u. D ) |
17 |
16 9
|
sseqtrrid |
|- ( ph -> D C_ A ) |
18 |
17
|
resmptd |
|- ( ph -> ( ( k e. A |-> X ) |` D ) = ( k e. D |-> X ) ) |
19 |
18
|
oveq2d |
|- ( ph -> ( G gsum ( ( k e. A |-> X ) |` D ) ) = ( G gsum ( k e. D |-> X ) ) ) |
20 |
15 19
|
oveq12d |
|- ( ph -> ( ( G gsum ( ( k e. A |-> X ) |` C ) ) .+ ( G gsum ( ( k e. A |-> X ) |` D ) ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |
21 |
11 20
|
eqtrd |
|- ( ph -> ( G gsum ( k e. A |-> X ) ) = ( ( G gsum ( k e. C |-> X ) ) .+ ( G gsum ( k e. D |-> X ) ) ) ) |