| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsub.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumsub.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumsub.m |
|- .- = ( -g ` G ) |
| 4 |
|
gsumsub.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
gsumsub.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsumsub.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
gsumsub.h |
|- ( ph -> H : A --> B ) |
| 8 |
|
gsumsub.fn |
|- ( ph -> F finSupp .0. ) |
| 9 |
|
gsumsub.hn |
|- ( ph -> H finSupp .0. ) |
| 10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 11 |
|
ablcmn |
|- ( G e. Abel -> G e. CMnd ) |
| 12 |
4 11
|
syl |
|- ( ph -> G e. CMnd ) |
| 13 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 14 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 15 |
4 14
|
syl |
|- ( ph -> G e. Grp ) |
| 16 |
1 13 15
|
grpinvf1o |
|- ( ph -> ( invg ` G ) : B -1-1-onto-> B ) |
| 17 |
|
f1of |
|- ( ( invg ` G ) : B -1-1-onto-> B -> ( invg ` G ) : B --> B ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( invg ` G ) : B --> B ) |
| 19 |
|
fco |
|- ( ( ( invg ` G ) : B --> B /\ H : A --> B ) -> ( ( invg ` G ) o. H ) : A --> B ) |
| 20 |
18 7 19
|
syl2anc |
|- ( ph -> ( ( invg ` G ) o. H ) : A --> B ) |
| 21 |
2
|
fvexi |
|- .0. e. _V |
| 22 |
21
|
a1i |
|- ( ph -> .0. e. _V ) |
| 23 |
1
|
fvexi |
|- B e. _V |
| 24 |
23
|
a1i |
|- ( ph -> B e. _V ) |
| 25 |
2 13
|
grpinvid |
|- ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 26 |
15 25
|
syl |
|- ( ph -> ( ( invg ` G ) ` .0. ) = .0. ) |
| 27 |
22 7 18 5 24 9 26
|
fsuppco2 |
|- ( ph -> ( ( invg ` G ) o. H ) finSupp .0. ) |
| 28 |
1 2 10 12 5 6 20 8 27
|
gsumadd |
|- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) |
| 29 |
1 2 13 4 5 7 9
|
gsuminv |
|- ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) |
| 30 |
29
|
oveq2d |
|- ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 31 |
28 30
|
eqtrd |
|- ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 32 |
6
|
ffvelcdmda |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) |
| 33 |
7
|
ffvelcdmda |
|- ( ( ph /\ k e. A ) -> ( H ` k ) e. B ) |
| 34 |
1 10 13 3
|
grpsubval |
|- ( ( ( F ` k ) e. B /\ ( H ` k ) e. B ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 35 |
32 33 34
|
syl2anc |
|- ( ( ph /\ k e. A ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 36 |
35
|
mpteq2dva |
|- ( ph -> ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 37 |
6
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
| 38 |
7
|
feqmptd |
|- ( ph -> H = ( k e. A |-> ( H ` k ) ) ) |
| 39 |
5 32 33 37 38
|
offval2 |
|- ( ph -> ( F oF .- H ) = ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) ) |
| 40 |
|
fvexd |
|- ( ( ph /\ k e. A ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) |
| 41 |
18
|
feqmptd |
|- ( ph -> ( invg ` G ) = ( x e. B |-> ( ( invg ` G ) ` x ) ) ) |
| 42 |
|
fveq2 |
|- ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) |
| 43 |
33 38 41 42
|
fmptco |
|- ( ph -> ( ( invg ` G ) o. H ) = ( k e. A |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) |
| 44 |
5 32 40 37 43
|
offval2 |
|- ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) |
| 45 |
36 39 44
|
3eqtr4d |
|- ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) |
| 47 |
1 2 12 5 6 8
|
gsumcl |
|- ( ph -> ( G gsum F ) e. B ) |
| 48 |
1 2 12 5 7 9
|
gsumcl |
|- ( ph -> ( G gsum H ) e. B ) |
| 49 |
1 10 13 3
|
grpsubval |
|- ( ( ( G gsum F ) e. B /\ ( G gsum H ) e. B ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 50 |
47 48 49
|
syl2anc |
|- ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) |
| 51 |
31 46 50
|
3eqtr4d |
|- ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |