| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsub.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumsub.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsumsub.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | gsumsub.g |  |-  ( ph -> G e. Abel ) | 
						
							| 5 |  | gsumsub.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | gsumsub.f |  |-  ( ph -> F : A --> B ) | 
						
							| 7 |  | gsumsub.h |  |-  ( ph -> H : A --> B ) | 
						
							| 8 |  | gsumsub.fn |  |-  ( ph -> F finSupp .0. ) | 
						
							| 9 |  | gsumsub.hn |  |-  ( ph -> H finSupp .0. ) | 
						
							| 10 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 11 |  | ablcmn |  |-  ( G e. Abel -> G e. CMnd ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> G e. CMnd ) | 
						
							| 13 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 14 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 16 | 1 13 15 | grpinvf1o |  |-  ( ph -> ( invg ` G ) : B -1-1-onto-> B ) | 
						
							| 17 |  | f1of |  |-  ( ( invg ` G ) : B -1-1-onto-> B -> ( invg ` G ) : B --> B ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( invg ` G ) : B --> B ) | 
						
							| 19 |  | fco |  |-  ( ( ( invg ` G ) : B --> B /\ H : A --> B ) -> ( ( invg ` G ) o. H ) : A --> B ) | 
						
							| 20 | 18 7 19 | syl2anc |  |-  ( ph -> ( ( invg ` G ) o. H ) : A --> B ) | 
						
							| 21 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 22 | 21 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 23 | 1 | fvexi |  |-  B e. _V | 
						
							| 24 | 23 | a1i |  |-  ( ph -> B e. _V ) | 
						
							| 25 | 2 13 | grpinvid |  |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 26 | 15 25 | syl |  |-  ( ph -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 27 | 22 7 18 5 24 9 26 | fsuppco2 |  |-  ( ph -> ( ( invg ` G ) o. H ) finSupp .0. ) | 
						
							| 28 | 1 2 10 12 5 6 20 8 27 | gsumadd |  |-  ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) ) | 
						
							| 29 | 1 2 13 4 5 7 9 | gsuminv |  |-  ( ph -> ( G gsum ( ( invg ` G ) o. H ) ) = ( ( invg ` G ) ` ( G gsum H ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ph -> ( ( G gsum F ) ( +g ` G ) ( G gsum ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) | 
						
							| 31 | 28 30 | eqtrd |  |-  ( ph -> ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) | 
						
							| 32 | 6 | ffvelcdmda |  |-  ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) | 
						
							| 33 | 7 | ffvelcdmda |  |-  ( ( ph /\ k e. A ) -> ( H ` k ) e. B ) | 
						
							| 34 | 1 10 13 3 | grpsubval |  |-  ( ( ( F ` k ) e. B /\ ( H ` k ) e. B ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) | 
						
							| 35 | 32 33 34 | syl2anc |  |-  ( ( ph /\ k e. A ) -> ( ( F ` k ) .- ( H ` k ) ) = ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) | 
						
							| 36 | 35 | mpteq2dva |  |-  ( ph -> ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) | 
						
							| 37 | 6 | feqmptd |  |-  ( ph -> F = ( k e. A |-> ( F ` k ) ) ) | 
						
							| 38 | 7 | feqmptd |  |-  ( ph -> H = ( k e. A |-> ( H ` k ) ) ) | 
						
							| 39 | 5 32 33 37 38 | offval2 |  |-  ( ph -> ( F oF .- H ) = ( k e. A |-> ( ( F ` k ) .- ( H ` k ) ) ) ) | 
						
							| 40 |  | fvexd |  |-  ( ( ph /\ k e. A ) -> ( ( invg ` G ) ` ( H ` k ) ) e. _V ) | 
						
							| 41 | 18 | feqmptd |  |-  ( ph -> ( invg ` G ) = ( x e. B |-> ( ( invg ` G ) ` x ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( x = ( H ` k ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( H ` k ) ) ) | 
						
							| 43 | 33 38 41 42 | fmptco |  |-  ( ph -> ( ( invg ` G ) o. H ) = ( k e. A |-> ( ( invg ` G ) ` ( H ` k ) ) ) ) | 
						
							| 44 | 5 32 40 37 43 | offval2 |  |-  ( ph -> ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) = ( k e. A |-> ( ( F ` k ) ( +g ` G ) ( ( invg ` G ) ` ( H ` k ) ) ) ) ) | 
						
							| 45 | 36 39 44 | 3eqtr4d |  |-  ( ph -> ( F oF .- H ) = ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( ph -> ( G gsum ( F oF .- H ) ) = ( G gsum ( F oF ( +g ` G ) ( ( invg ` G ) o. H ) ) ) ) | 
						
							| 47 | 1 2 12 5 6 8 | gsumcl |  |-  ( ph -> ( G gsum F ) e. B ) | 
						
							| 48 | 1 2 12 5 7 9 | gsumcl |  |-  ( ph -> ( G gsum H ) e. B ) | 
						
							| 49 | 1 10 13 3 | grpsubval |  |-  ( ( ( G gsum F ) e. B /\ ( G gsum H ) e. B ) -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) | 
						
							| 50 | 47 48 49 | syl2anc |  |-  ( ph -> ( ( G gsum F ) .- ( G gsum H ) ) = ( ( G gsum F ) ( +g ` G ) ( ( invg ` G ) ` ( G gsum H ) ) ) ) | 
						
							| 51 | 31 46 50 | 3eqtr4d |  |-  ( ph -> ( G gsum ( F oF .- H ) ) = ( ( G gsum F ) .- ( G gsum H ) ) ) |