| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsubm.a |
|- ( ph -> A e. V ) |
| 2 |
|
gsumsubm.s |
|- ( ph -> S e. ( SubMnd ` G ) ) |
| 3 |
|
gsumsubm.f |
|- ( ph -> F : A --> S ) |
| 4 |
|
gsumsubm.h |
|- H = ( G |`s S ) |
| 5 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
|
submrcl |
|- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
| 8 |
2 7
|
syl |
|- ( ph -> G e. Mnd ) |
| 9 |
5
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 10 |
2 9
|
syl |
|- ( ph -> S C_ ( Base ` G ) ) |
| 11 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 12 |
11
|
subm0cl |
|- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) |
| 13 |
2 12
|
syl |
|- ( ph -> ( 0g ` G ) e. S ) |
| 14 |
5 6 11
|
mndlrid |
|- ( ( G e. Mnd /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 15 |
8 14
|
sylan |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( ( 0g ` G ) ( +g ` G ) x ) = x /\ ( x ( +g ` G ) ( 0g ` G ) ) = x ) ) |
| 16 |
5 6 4 8 1 10 3 13 15
|
gsumress |
|- ( ph -> ( G gsum F ) = ( H gsum F ) ) |