Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 2-Jan-2019) (Proof shortened by AV, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumunsnd.b | |- B = ( Base ` G ) |
|
gsumunsnd.p | |- .+ = ( +g ` G ) |
||
gsumunsnd.g | |- ( ph -> G e. CMnd ) |
||
gsumunsnd.a | |- ( ph -> A e. Fin ) |
||
gsumunsnd.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
||
gsumunsnd.m | |- ( ph -> M e. V ) |
||
gsumunsnd.d | |- ( ph -> -. M e. A ) |
||
gsumunsnd.y | |- ( ph -> Y e. B ) |
||
gsumunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
||
Assertion | gsumunsnd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumunsnd.b | |- B = ( Base ` G ) |
|
2 | gsumunsnd.p | |- .+ = ( +g ` G ) |
|
3 | gsumunsnd.g | |- ( ph -> G e. CMnd ) |
|
4 | gsumunsnd.a | |- ( ph -> A e. Fin ) |
|
5 | gsumunsnd.f | |- ( ( ph /\ k e. A ) -> X e. B ) |
|
6 | gsumunsnd.m | |- ( ph -> M e. V ) |
|
7 | gsumunsnd.d | |- ( ph -> -. M e. A ) |
|
8 | gsumunsnd.y | |- ( ph -> Y e. B ) |
|
9 | gsumunsnd.s | |- ( ( ph /\ k = M ) -> X = Y ) |
|
10 | nfcv | |- F/_ k Y |
|
11 | 1 2 3 4 5 6 7 8 9 10 | gsumunsnfd | |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) ) |