Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsumunsnf  
				
		 
		
			
		 
		Description:   Append an element to a finite group sum, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by Mario
       Carneiro , 19-Dec-2014)   (Revised by Thierry Arnoux , 28-Mar-2018) 
       (Proof shortened by AV , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumunsnf.0 |- F/_ k Y  
					
						gsumunsnf.b |- B = ( Base ` G )  
					
						gsumunsnf.p |- .+ = ( +g ` G )  
					
						gsumunsnf.g |- ( ph -> G e. CMnd )  
					
						gsumunsnf.a |- ( ph -> A e. Fin )  
					
						gsumunsnf.f |- ( ( ph /\ k e. A ) -> X e. B )  
					
						gsumunsnf.m |- ( ph -> M e. V )  
					
						gsumunsnf.d |- ( ph -> -. M e. A )  
					
						gsumunsnf.y |- ( ph -> Y e. B )  
					
						gsumunsnf.s |- ( k = M -> X = Y )  
				
					Assertion 
					gsumunsnf |- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumunsnf.0  |-  F/_ k Y  
						
							2 
								
							 
							gsumunsnf.b  |-  B = ( Base ` G )  
						
							3 
								
							 
							gsumunsnf.p  |-  .+ = ( +g ` G )  
						
							4 
								
							 
							gsumunsnf.g  |-  ( ph -> G e. CMnd )  
						
							5 
								
							 
							gsumunsnf.a  |-  ( ph -> A e. Fin )  
						
							6 
								
							 
							gsumunsnf.f  |-  ( ( ph /\ k e. A ) -> X e. B )  
						
							7 
								
							 
							gsumunsnf.m  |-  ( ph -> M e. V )  
						
							8 
								
							 
							gsumunsnf.d  |-  ( ph -> -. M e. A )  
						
							9 
								
							 
							gsumunsnf.y  |-  ( ph -> Y e. B )  
						
							10 
								
							 
							gsumunsnf.s  |-  ( k = M -> X = Y )  
						
							11 
								10 
							 
							adantl  |-  ( ( ph /\ k = M ) -> X = Y )  
						
							12 
								2  3  4  5  6  7  8  9  11  1 
							 
							gsumunsnfd  |-  ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )