Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumunsnf
Metamath Proof Explorer
Description: Append an element to a finite group sum, using bound-variable hypotheses
instead of distinct variable conditions. (Contributed by Mario
Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018)
(Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumunsnf.0
|- F/_ k Y
gsumunsnf.b
|- B = ( Base ` G )
gsumunsnf.p
|- .+ = ( +g ` G )
gsumunsnf.g
|- ( ph -> G e. CMnd )
gsumunsnf.a
|- ( ph -> A e. Fin )
gsumunsnf.f
|- ( ( ph /\ k e. A ) -> X e. B )
gsumunsnf.m
|- ( ph -> M e. V )
gsumunsnf.d
|- ( ph -> -. M e. A )
gsumunsnf.y
|- ( ph -> Y e. B )
gsumunsnf.s
|- ( k = M -> X = Y )
Assertion
gsumunsnf
|- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )
Proof
Step
Hyp
Ref
Expression
1
gsumunsnf.0
|- F/_ k Y
2
gsumunsnf.b
|- B = ( Base ` G )
3
gsumunsnf.p
|- .+ = ( +g ` G )
4
gsumunsnf.g
|- ( ph -> G e. CMnd )
5
gsumunsnf.a
|- ( ph -> A e. Fin )
6
gsumunsnf.f
|- ( ( ph /\ k e. A ) -> X e. B )
7
gsumunsnf.m
|- ( ph -> M e. V )
8
gsumunsnf.d
|- ( ph -> -. M e. A )
9
gsumunsnf.y
|- ( ph -> Y e. B )
10
gsumunsnf.s
|- ( k = M -> X = Y )
11
10
adantl
|- ( ( ph /\ k = M ) -> X = Y )
12
2 3 4 5 6 7 8 9 11 1
gsumunsnfd
|- ( ph -> ( G gsum ( k e. ( A u. { M } ) |-> X ) ) = ( ( G gsum ( k e. A |-> X ) ) .+ Y ) )