Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval3.b |
|- B = ( Base ` G ) |
2 |
|
gsumval3.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsumval3.p |
|- .+ = ( +g ` G ) |
4 |
|
gsumval3.z |
|- Z = ( Cntz ` G ) |
5 |
|
gsumval3.g |
|- ( ph -> G e. Mnd ) |
6 |
|
gsumval3.a |
|- ( ph -> A e. V ) |
7 |
|
gsumval3.f |
|- ( ph -> F : A --> B ) |
8 |
|
gsumval3.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
9 |
|
gsumval3.m |
|- ( ph -> M e. NN ) |
10 |
|
gsumval3.h |
|- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
11 |
|
gsumval3.n |
|- ( ph -> ( F supp .0. ) C_ ran H ) |
12 |
|
gsumval3.w |
|- W = ( ( F o. H ) supp .0. ) |
13 |
2
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
14 |
5 6 13
|
syl2anc |
|- ( ph -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
15 |
14
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
16 |
7
|
feqmptd |
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> ( F ` x ) ) ) |
18 |
|
f1f |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
19 |
10 18
|
syl |
|- ( ph -> H : ( 1 ... M ) --> A ) |
20 |
19
|
ad2antrr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> H : ( 1 ... M ) --> A ) |
21 |
|
f1f1orn |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
22 |
10 21
|
syl |
|- ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
23 |
22
|
adantr |
|- ( ( ph /\ W = (/) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
24 |
|
f1ocnv |
|- ( H : ( 1 ... M ) -1-1-onto-> ran H -> `' H : ran H -1-1-onto-> ( 1 ... M ) ) |
25 |
|
f1of |
|- ( `' H : ran H -1-1-onto-> ( 1 ... M ) -> `' H : ran H --> ( 1 ... M ) ) |
26 |
23 24 25
|
3syl |
|- ( ( ph /\ W = (/) ) -> `' H : ran H --> ( 1 ... M ) ) |
27 |
26
|
ffvelrnda |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( 1 ... M ) ) |
28 |
|
fvco3 |
|- ( ( H : ( 1 ... M ) --> A /\ ( `' H ` x ) e. ( 1 ... M ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
29 |
20 27 28
|
syl2anc |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
30 |
|
simpr |
|- ( ( ph /\ W = (/) ) -> W = (/) ) |
31 |
30
|
difeq2d |
|- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( ( 1 ... M ) \ (/) ) ) |
32 |
|
dif0 |
|- ( ( 1 ... M ) \ (/) ) = ( 1 ... M ) |
33 |
31 32
|
eqtrdi |
|- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
35 |
27 34
|
eleqtrrd |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) |
36 |
|
fco |
|- ( ( F : A --> B /\ H : ( 1 ... M ) --> A ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
37 |
7 19 36
|
syl2anc |
|- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
38 |
37
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
39 |
12
|
eqimss2i |
|- ( ( F o. H ) supp .0. ) C_ W |
40 |
39
|
a1i |
|- ( ( ph /\ W = (/) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
41 |
|
ovexd |
|- ( ( ph /\ W = (/) ) -> ( 1 ... M ) e. _V ) |
42 |
2
|
fvexi |
|- .0. e. _V |
43 |
42
|
a1i |
|- ( ( ph /\ W = (/) ) -> .0. e. _V ) |
44 |
38 40 41 43
|
suppssr |
|- ( ( ( ph /\ W = (/) ) /\ ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
45 |
35 44
|
syldan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
46 |
|
f1ocnvfv2 |
|- ( ( H : ( 1 ... M ) -1-1-onto-> ran H /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
47 |
23 46
|
sylan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
48 |
47
|
fveq2d |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` ( H ` ( `' H ` x ) ) ) = ( F ` x ) ) |
49 |
29 45 48
|
3eqtr3rd |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) = .0. ) |
50 |
|
fvex |
|- ( F ` x ) e. _V |
51 |
50
|
elsn |
|- ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) |
52 |
49 51
|
sylibr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
53 |
52
|
adantlr |
|- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
54 |
|
eldif |
|- ( x e. ( A \ ran H ) <-> ( x e. A /\ -. x e. ran H ) ) |
55 |
42
|
a1i |
|- ( ph -> .0. e. _V ) |
56 |
7 11 6 55
|
suppssr |
|- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
57 |
56 51
|
sylibr |
|- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) e. { .0. } ) |
58 |
54 57
|
sylan2br |
|- ( ( ph /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
59 |
58
|
adantlr |
|- ( ( ( ph /\ W = (/) ) /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
60 |
59
|
anassrs |
|- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ -. x e. ran H ) -> ( F ` x ) e. { .0. } ) |
61 |
53 60
|
pm2.61dan |
|- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) e. { .0. } ) |
62 |
61 51
|
sylib |
|- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) = .0. ) |
63 |
62
|
mpteq2dva |
|- ( ( ph /\ W = (/) ) -> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> .0. ) ) |
64 |
17 63
|
eqtrd |
|- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> .0. ) ) |
65 |
64
|
oveq2d |
|- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( G gsum ( x e. A |-> .0. ) ) ) |
66 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
67 |
1 3 2
|
mndlid |
|- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
68 |
5 66 67
|
syl2anc2 |
|- ( ph -> ( .0. .+ .0. ) = .0. ) |
69 |
68
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( .0. .+ .0. ) = .0. ) |
70 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
71 |
9 70
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ W = (/) ) -> M e. ( ZZ>= ` 1 ) ) |
73 |
33
|
eleq2d |
|- ( ( ph /\ W = (/) ) -> ( x e. ( ( 1 ... M ) \ W ) <-> x e. ( 1 ... M ) ) ) |
74 |
73
|
biimpar |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> x e. ( ( 1 ... M ) \ W ) ) |
75 |
38 40 41 43
|
suppssr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
76 |
74 75
|
syldan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) = .0. ) |
77 |
69 72 76
|
seqid3 |
|- ( ( ph /\ W = (/) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = .0. ) |
78 |
15 65 77
|
3eqtr4d |
|- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
79 |
|
fzf |
|- ... : ( ZZ X. ZZ ) --> ~P ZZ |
80 |
|
ffn |
|- ( ... : ( ZZ X. ZZ ) --> ~P ZZ -> ... Fn ( ZZ X. ZZ ) ) |
81 |
|
ovelrn |
|- ( ... Fn ( ZZ X. ZZ ) -> ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) ) |
82 |
79 80 81
|
mp2b |
|- ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) |
83 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> G e. Mnd ) |
84 |
|
simpr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A = ( m ... n ) ) |
85 |
|
frel |
|- ( F : A --> B -> Rel F ) |
86 |
|
reldm0 |
|- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
87 |
7 85 86
|
3syl |
|- ( ph -> ( F = (/) <-> dom F = (/) ) ) |
88 |
7
|
fdmd |
|- ( ph -> dom F = A ) |
89 |
88
|
eqeq1d |
|- ( ph -> ( dom F = (/) <-> A = (/) ) ) |
90 |
87 89
|
bitrd |
|- ( ph -> ( F = (/) <-> A = (/) ) ) |
91 |
|
coeq1 |
|- ( F = (/) -> ( F o. H ) = ( (/) o. H ) ) |
92 |
|
co01 |
|- ( (/) o. H ) = (/) |
93 |
91 92
|
eqtrdi |
|- ( F = (/) -> ( F o. H ) = (/) ) |
94 |
93
|
oveq1d |
|- ( F = (/) -> ( ( F o. H ) supp .0. ) = ( (/) supp .0. ) ) |
95 |
|
supp0 |
|- ( .0. e. _V -> ( (/) supp .0. ) = (/) ) |
96 |
42 95
|
ax-mp |
|- ( (/) supp .0. ) = (/) |
97 |
94 96
|
eqtrdi |
|- ( F = (/) -> ( ( F o. H ) supp .0. ) = (/) ) |
98 |
12 97
|
eqtrid |
|- ( F = (/) -> W = (/) ) |
99 |
90 98
|
syl6bir |
|- ( ph -> ( A = (/) -> W = (/) ) ) |
100 |
99
|
necon3d |
|- ( ph -> ( W =/= (/) -> A =/= (/) ) ) |
101 |
100
|
imp |
|- ( ( ph /\ W =/= (/) ) -> A =/= (/) ) |
102 |
101
|
adantr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A =/= (/) ) |
103 |
84 102
|
eqnetrrd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( m ... n ) =/= (/) ) |
104 |
|
fzn0 |
|- ( ( m ... n ) =/= (/) <-> n e. ( ZZ>= ` m ) ) |
105 |
103 104
|
sylib |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> n e. ( ZZ>= ` m ) ) |
106 |
7
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : A --> B ) |
107 |
84
|
feq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( F : A --> B <-> F : ( m ... n ) --> B ) ) |
108 |
106 107
|
mpbid |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : ( m ... n ) --> B ) |
109 |
1 3 83 105 108
|
gsumval2 |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq m ( .+ , F ) ` n ) ) |
110 |
|
frn |
|- ( H : ( 1 ... M ) --> A -> ran H C_ A ) |
111 |
10 18 110
|
3syl |
|- ( ph -> ran H C_ A ) |
112 |
111
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ A ) |
113 |
112 84
|
sseqtrd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ ( m ... n ) ) |
114 |
|
fzssuz |
|- ( m ... n ) C_ ( ZZ>= ` m ) |
115 |
|
uzssz |
|- ( ZZ>= ` m ) C_ ZZ |
116 |
|
zssre |
|- ZZ C_ RR |
117 |
115 116
|
sstri |
|- ( ZZ>= ` m ) C_ RR |
118 |
114 117
|
sstri |
|- ( m ... n ) C_ RR |
119 |
113 118
|
sstrdi |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ RR ) |
120 |
|
ltso |
|- < Or RR |
121 |
|
soss |
|- ( ran H C_ RR -> ( < Or RR -> < Or ran H ) ) |
122 |
119 120 121
|
mpisyl |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> < Or ran H ) |
123 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
124 |
123
|
a1i |
|- ( ph -> ( 1 ... M ) e. Fin ) |
125 |
19 124
|
fexd |
|- ( ph -> H e. _V ) |
126 |
|
f1oen3g |
|- ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) |
127 |
125 22 126
|
syl2anc |
|- ( ph -> ( 1 ... M ) ~~ ran H ) |
128 |
|
enfi |
|- ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
129 |
127 128
|
syl |
|- ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
130 |
123 129
|
mpbii |
|- ( ph -> ran H e. Fin ) |
131 |
130
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H e. Fin ) |
132 |
|
fz1iso |
|- ( ( < Or ran H /\ ran H e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
133 |
122 131 132
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
134 |
9
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
135 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
136 |
134 135
|
syl |
|- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
137 |
124 22
|
hasheqf1od |
|- ( ph -> ( # ` ( 1 ... M ) ) = ( # ` ran H ) ) |
138 |
136 137
|
eqtr3d |
|- ( ph -> M = ( # ` ran H ) ) |
139 |
138
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M = ( # ` ran H ) ) |
140 |
139
|
fveq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. f ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
141 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> G e. Mnd ) |
142 |
1 3
|
mndcl |
|- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
143 |
142
|
3expb |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
144 |
141 143
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
145 |
8
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ ( Z ` ran F ) ) |
146 |
145
|
sselda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) -> x e. ( Z ` ran F ) ) |
147 |
3 4
|
cntzi |
|- ( ( x e. ( Z ` ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
148 |
146 147
|
sylan |
|- ( ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
149 |
148
|
anasss |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> ( x .+ y ) = ( y .+ x ) ) |
150 |
1 3
|
mndass |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
151 |
141 150
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
152 |
71
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M e. ( ZZ>= ` 1 ) ) |
153 |
7
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> B ) |
154 |
153
|
frnd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ B ) |
155 |
|
simprr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
156 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
157 |
155 156
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
158 |
139
|
oveq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( 1 ... M ) = ( 1 ... ( # ` ran H ) ) ) |
159 |
158
|
f1oeq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f : ( 1 ... M ) -1-1-onto-> ran H <-> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) ) |
160 |
157 159
|
mpbird |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) -1-1-onto-> ran H ) |
161 |
|
f1ocnv |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
162 |
160 161
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
163 |
22
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
164 |
|
f1oco |
|- ( ( `' f : ran H -1-1-onto-> ( 1 ... M ) /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
165 |
162 163 164
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
166 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
167 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
168 |
166 167
|
sylib |
|- ( F : A --> B -> F : A -onto-> ran F ) |
169 |
|
fof |
|- ( F : A -onto-> ran F -> F : A --> ran F ) |
170 |
153 168 169
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> ran F ) |
171 |
|
f1of |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> f : ( 1 ... M ) --> ran H ) |
172 |
160 171
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> ran H ) |
173 |
111
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ A ) |
174 |
172 173
|
fssd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> A ) |
175 |
|
fco |
|- ( ( F : A --> ran F /\ f : ( 1 ... M ) --> A ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
176 |
170 174 175
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
177 |
176
|
ffvelrnda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. f ) ` x ) e. ran F ) |
178 |
|
f1ococnv2 |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> ( f o. `' f ) = ( _I |` ran H ) ) |
179 |
160 178
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f o. `' f ) = ( _I |` ran H ) ) |
180 |
179
|
coeq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( f o. `' f ) o. H ) = ( ( _I |` ran H ) o. H ) ) |
181 |
|
f1of |
|- ( H : ( 1 ... M ) -1-1-onto-> ran H -> H : ( 1 ... M ) --> ran H ) |
182 |
|
fcoi2 |
|- ( H : ( 1 ... M ) --> ran H -> ( ( _I |` ran H ) o. H ) = H ) |
183 |
163 181 182
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( _I |` ran H ) o. H ) = H ) |
184 |
180 183
|
eqtr2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( ( f o. `' f ) o. H ) ) |
185 |
|
coass |
|- ( ( f o. `' f ) o. H ) = ( f o. ( `' f o. H ) ) |
186 |
184 185
|
eqtrdi |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( f o. ( `' f o. H ) ) ) |
187 |
186
|
coeq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( F o. ( f o. ( `' f o. H ) ) ) ) |
188 |
|
coass |
|- ( ( F o. f ) o. ( `' f o. H ) ) = ( F o. ( f o. ( `' f o. H ) ) ) |
189 |
187 188
|
eqtr4di |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( ( F o. f ) o. ( `' f o. H ) ) ) |
190 |
189
|
fveq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
191 |
190
|
adantr |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
192 |
|
f1of |
|- ( `' f : ran H -1-1-onto-> ( 1 ... M ) -> `' f : ran H --> ( 1 ... M ) ) |
193 |
160 161 192
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H --> ( 1 ... M ) ) |
194 |
163 181
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) --> ran H ) |
195 |
|
fco |
|- ( ( `' f : ran H --> ( 1 ... M ) /\ H : ( 1 ... M ) --> ran H ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
196 |
193 194 195
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
197 |
|
fvco3 |
|- ( ( ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
198 |
196 197
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
199 |
191 198
|
eqtrd |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
200 |
144 149 151 152 154 165 177 199
|
seqf1o |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` M ) ) |
201 |
1 3 2
|
mndlid |
|- ( ( G e. Mnd /\ x e. B ) -> ( .0. .+ x ) = x ) |
202 |
141 201
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
203 |
1 3 2
|
mndrid |
|- ( ( G e. Mnd /\ x e. B ) -> ( x .+ .0. ) = x ) |
204 |
141 203
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
205 |
141 66
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> .0. e. B ) |
206 |
|
fdm |
|- ( H : ( 1 ... M ) --> A -> dom H = ( 1 ... M ) ) |
207 |
10 18 206
|
3syl |
|- ( ph -> dom H = ( 1 ... M ) ) |
208 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
209 |
|
ne0i |
|- ( 1 e. ( 1 ... M ) -> ( 1 ... M ) =/= (/) ) |
210 |
71 208 209
|
3syl |
|- ( ph -> ( 1 ... M ) =/= (/) ) |
211 |
207 210
|
eqnetrd |
|- ( ph -> dom H =/= (/) ) |
212 |
|
dm0rn0 |
|- ( dom H = (/) <-> ran H = (/) ) |
213 |
212
|
necon3bii |
|- ( dom H =/= (/) <-> ran H =/= (/) ) |
214 |
211 213
|
sylib |
|- ( ph -> ran H =/= (/) ) |
215 |
214
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H =/= (/) ) |
216 |
113
|
adantrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ ( m ... n ) ) |
217 |
|
simprl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> A = ( m ... n ) ) |
218 |
217
|
eleq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. A <-> x e. ( m ... n ) ) ) |
219 |
218
|
biimpar |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> x e. A ) |
220 |
153
|
ffvelrnda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. A ) -> ( F ` x ) e. B ) |
221 |
219 220
|
syldan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> ( F ` x ) e. B ) |
222 |
217
|
difeq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( A \ ran H ) = ( ( m ... n ) \ ran H ) ) |
223 |
222
|
eleq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. ( A \ ran H ) <-> x e. ( ( m ... n ) \ ran H ) ) ) |
224 |
223
|
biimpar |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> x e. ( A \ ran H ) ) |
225 |
56
|
ad4ant14 |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
226 |
224 225
|
syldan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> ( F ` x ) = .0. ) |
227 |
|
f1of |
|- ( f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
228 |
155 156 227
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
229 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` ran H ) ) --> ran H /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
230 |
228 229
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
231 |
202 204 144 205 155 215 216 221 226 230
|
seqcoll2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq m ( .+ , F ) ` n ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
232 |
140 200 231
|
3eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
233 |
232
|
expr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
234 |
233
|
exlimdv |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
235 |
133 234
|
mpd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
236 |
109 235
|
eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
237 |
236
|
ex |
|- ( ( ph /\ W =/= (/) ) -> ( A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
238 |
237
|
rexlimdvw |
|- ( ( ph /\ W =/= (/) ) -> ( E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
239 |
238
|
rexlimdvw |
|- ( ( ph /\ W =/= (/) ) -> ( E. m e. ZZ E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
240 |
82 239
|
syl5bi |
|- ( ( ph /\ W =/= (/) ) -> ( A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
241 |
|
suppssdm |
|- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
242 |
12 241
|
eqsstri |
|- W C_ dom ( F o. H ) |
243 |
242 37
|
fssdm |
|- ( ph -> W C_ ( 1 ... M ) ) |
244 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
245 |
|
nnssre |
|- NN C_ RR |
246 |
244 245
|
sstri |
|- ( 1 ... M ) C_ RR |
247 |
243 246
|
sstrdi |
|- ( ph -> W C_ RR ) |
248 |
|
soss |
|- ( W C_ RR -> ( < Or RR -> < Or W ) ) |
249 |
247 120 248
|
mpisyl |
|- ( ph -> < Or W ) |
250 |
|
ssfi |
|- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
251 |
123 243 250
|
sylancr |
|- ( ph -> W e. Fin ) |
252 |
|
fz1iso |
|- ( ( < Or W /\ W e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
253 |
249 251 252
|
syl2anc |
|- ( ph -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
254 |
253
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
255 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
256 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) |
257 |
256 201
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
258 |
256 203
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
259 |
256 143
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
260 |
256 66
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. B ) |
261 |
|
simprr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
262 |
|
simplr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W =/= (/) ) |
263 |
243
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
264 |
37
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
265 |
264
|
ffvelrnda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) e. B ) |
266 |
39
|
a1i |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
267 |
|
ovexd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( 1 ... M ) e. _V ) |
268 |
42
|
a1i |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. _V ) |
269 |
264 266 267 268
|
suppssr |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
270 |
|
coass |
|- ( ( F o. H ) o. f ) = ( F o. ( H o. f ) ) |
271 |
270
|
fveq1i |
|- ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. ( H o. f ) ) ` y ) |
272 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
273 |
|
f1of |
|- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) |
274 |
261 272 273
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f : ( 1 ... ( # ` W ) ) --> W ) |
275 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` W ) ) --> W /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
276 |
274 275
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
277 |
271 276
|
eqtr3id |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. ( H o. f ) ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
278 |
257 258 259 260 261 262 263 265 269 277
|
seqcoll2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
279 |
255 278
|
eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
280 |
279
|
expr |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
281 |
280
|
exlimdv |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
282 |
254 281
|
mpd |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
283 |
282
|
ex |
|- ( ( ph /\ W =/= (/) ) -> ( -. A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
284 |
240 283
|
pm2.61d |
|- ( ( ph /\ W =/= (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
285 |
78 284
|
pm2.61dane |
|- ( ph -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |