| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumval3.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumval3.p |
|- .+ = ( +g ` G ) |
| 4 |
|
gsumval3.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
gsumval3.g |
|- ( ph -> G e. Mnd ) |
| 6 |
|
gsumval3.a |
|- ( ph -> A e. V ) |
| 7 |
|
gsumval3.f |
|- ( ph -> F : A --> B ) |
| 8 |
|
gsumval3.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 9 |
|
gsumval3.m |
|- ( ph -> M e. NN ) |
| 10 |
|
gsumval3.h |
|- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
| 11 |
|
gsumval3.n |
|- ( ph -> ( F supp .0. ) C_ ran H ) |
| 12 |
|
gsumval3.w |
|- W = ( ( F o. H ) supp .0. ) |
| 13 |
2
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 14 |
5 6 13
|
syl2anc |
|- ( ph -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 16 |
7
|
feqmptd |
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> ( F ` x ) ) ) |
| 18 |
|
f1f |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
| 19 |
10 18
|
syl |
|- ( ph -> H : ( 1 ... M ) --> A ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> H : ( 1 ... M ) --> A ) |
| 21 |
|
f1f1orn |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 22 |
10 21
|
syl |
|- ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ W = (/) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 24 |
|
f1ocnv |
|- ( H : ( 1 ... M ) -1-1-onto-> ran H -> `' H : ran H -1-1-onto-> ( 1 ... M ) ) |
| 25 |
|
f1of |
|- ( `' H : ran H -1-1-onto-> ( 1 ... M ) -> `' H : ran H --> ( 1 ... M ) ) |
| 26 |
23 24 25
|
3syl |
|- ( ( ph /\ W = (/) ) -> `' H : ran H --> ( 1 ... M ) ) |
| 27 |
26
|
ffvelcdmda |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( 1 ... M ) ) |
| 28 |
|
fvco3 |
|- ( ( H : ( 1 ... M ) --> A /\ ( `' H ` x ) e. ( 1 ... M ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
| 29 |
20 27 28
|
syl2anc |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = ( F ` ( H ` ( `' H ` x ) ) ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ W = (/) ) -> W = (/) ) |
| 31 |
30
|
difeq2d |
|- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( ( 1 ... M ) \ (/) ) ) |
| 32 |
|
dif0 |
|- ( ( 1 ... M ) \ (/) ) = ( 1 ... M ) |
| 33 |
31 32
|
eqtrdi |
|- ( ( ph /\ W = (/) ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( 1 ... M ) \ W ) = ( 1 ... M ) ) |
| 35 |
27 34
|
eleqtrrd |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) |
| 36 |
|
fco |
|- ( ( F : A --> B /\ H : ( 1 ... M ) --> A ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 37 |
7 19 36
|
syl2anc |
|- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 39 |
12
|
eqimss2i |
|- ( ( F o. H ) supp .0. ) C_ W |
| 40 |
39
|
a1i |
|- ( ( ph /\ W = (/) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
| 41 |
|
ovexd |
|- ( ( ph /\ W = (/) ) -> ( 1 ... M ) e. _V ) |
| 42 |
2
|
fvexi |
|- .0. e. _V |
| 43 |
42
|
a1i |
|- ( ( ph /\ W = (/) ) -> .0. e. _V ) |
| 44 |
38 40 41 43
|
suppssr |
|- ( ( ( ph /\ W = (/) ) /\ ( `' H ` x ) e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
| 45 |
35 44
|
syldan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( ( F o. H ) ` ( `' H ` x ) ) = .0. ) |
| 46 |
|
f1ocnvfv2 |
|- ( ( H : ( 1 ... M ) -1-1-onto-> ran H /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
| 47 |
23 46
|
sylan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( H ` ( `' H ` x ) ) = x ) |
| 48 |
47
|
fveq2d |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` ( H ` ( `' H ` x ) ) ) = ( F ` x ) ) |
| 49 |
29 45 48
|
3eqtr3rd |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) = .0. ) |
| 50 |
|
fvex |
|- ( F ` x ) e. _V |
| 51 |
50
|
elsn |
|- ( ( F ` x ) e. { .0. } <-> ( F ` x ) = .0. ) |
| 52 |
49 51
|
sylibr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 53 |
52
|
adantlr |
|- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 54 |
|
eldif |
|- ( x e. ( A \ ran H ) <-> ( x e. A /\ -. x e. ran H ) ) |
| 55 |
42
|
a1i |
|- ( ph -> .0. e. _V ) |
| 56 |
7 11 6 55
|
suppssr |
|- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
| 57 |
56 51
|
sylibr |
|- ( ( ph /\ x e. ( A \ ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 58 |
54 57
|
sylan2br |
|- ( ( ph /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 59 |
58
|
adantlr |
|- ( ( ( ph /\ W = (/) ) /\ ( x e. A /\ -. x e. ran H ) ) -> ( F ` x ) e. { .0. } ) |
| 60 |
59
|
anassrs |
|- ( ( ( ( ph /\ W = (/) ) /\ x e. A ) /\ -. x e. ran H ) -> ( F ` x ) e. { .0. } ) |
| 61 |
53 60
|
pm2.61dan |
|- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) e. { .0. } ) |
| 62 |
61 51
|
sylib |
|- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> ( F ` x ) = .0. ) |
| 63 |
62
|
mpteq2dva |
|- ( ( ph /\ W = (/) ) -> ( x e. A |-> ( F ` x ) ) = ( x e. A |-> .0. ) ) |
| 64 |
17 63
|
eqtrd |
|- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> .0. ) ) |
| 65 |
64
|
oveq2d |
|- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( G gsum ( x e. A |-> .0. ) ) ) |
| 66 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
| 67 |
1 3 2
|
mndlid |
|- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
| 68 |
5 66 67
|
syl2anc2 |
|- ( ph -> ( .0. .+ .0. ) = .0. ) |
| 69 |
68
|
adantr |
|- ( ( ph /\ W = (/) ) -> ( .0. .+ .0. ) = .0. ) |
| 70 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 71 |
9 70
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ W = (/) ) -> M e. ( ZZ>= ` 1 ) ) |
| 73 |
33
|
eleq2d |
|- ( ( ph /\ W = (/) ) -> ( x e. ( ( 1 ... M ) \ W ) <-> x e. ( 1 ... M ) ) ) |
| 74 |
73
|
biimpar |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> x e. ( ( 1 ... M ) \ W ) ) |
| 75 |
38 40 41 43
|
suppssr |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 76 |
74 75
|
syldan |
|- ( ( ( ph /\ W = (/) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 77 |
69 72 76
|
seqid3 |
|- ( ( ph /\ W = (/) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = .0. ) |
| 78 |
15 65 77
|
3eqtr4d |
|- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 79 |
|
fzf |
|- ... : ( ZZ X. ZZ ) --> ~P ZZ |
| 80 |
|
ffn |
|- ( ... : ( ZZ X. ZZ ) --> ~P ZZ -> ... Fn ( ZZ X. ZZ ) ) |
| 81 |
|
ovelrn |
|- ( ... Fn ( ZZ X. ZZ ) -> ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) ) |
| 82 |
79 80 81
|
mp2b |
|- ( A e. ran ... <-> E. m e. ZZ E. n e. ZZ A = ( m ... n ) ) |
| 83 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> G e. Mnd ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A = ( m ... n ) ) |
| 85 |
|
frel |
|- ( F : A --> B -> Rel F ) |
| 86 |
|
reldm0 |
|- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
| 87 |
7 85 86
|
3syl |
|- ( ph -> ( F = (/) <-> dom F = (/) ) ) |
| 88 |
7
|
fdmd |
|- ( ph -> dom F = A ) |
| 89 |
88
|
eqeq1d |
|- ( ph -> ( dom F = (/) <-> A = (/) ) ) |
| 90 |
87 89
|
bitrd |
|- ( ph -> ( F = (/) <-> A = (/) ) ) |
| 91 |
|
coeq1 |
|- ( F = (/) -> ( F o. H ) = ( (/) o. H ) ) |
| 92 |
|
co01 |
|- ( (/) o. H ) = (/) |
| 93 |
91 92
|
eqtrdi |
|- ( F = (/) -> ( F o. H ) = (/) ) |
| 94 |
93
|
oveq1d |
|- ( F = (/) -> ( ( F o. H ) supp .0. ) = ( (/) supp .0. ) ) |
| 95 |
|
supp0 |
|- ( .0. e. _V -> ( (/) supp .0. ) = (/) ) |
| 96 |
42 95
|
ax-mp |
|- ( (/) supp .0. ) = (/) |
| 97 |
94 96
|
eqtrdi |
|- ( F = (/) -> ( ( F o. H ) supp .0. ) = (/) ) |
| 98 |
12 97
|
eqtrid |
|- ( F = (/) -> W = (/) ) |
| 99 |
90 98
|
biimtrrdi |
|- ( ph -> ( A = (/) -> W = (/) ) ) |
| 100 |
99
|
necon3d |
|- ( ph -> ( W =/= (/) -> A =/= (/) ) ) |
| 101 |
100
|
imp |
|- ( ( ph /\ W =/= (/) ) -> A =/= (/) ) |
| 102 |
101
|
adantr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> A =/= (/) ) |
| 103 |
84 102
|
eqnetrrd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( m ... n ) =/= (/) ) |
| 104 |
|
fzn0 |
|- ( ( m ... n ) =/= (/) <-> n e. ( ZZ>= ` m ) ) |
| 105 |
103 104
|
sylib |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> n e. ( ZZ>= ` m ) ) |
| 106 |
7
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : A --> B ) |
| 107 |
84
|
feq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( F : A --> B <-> F : ( m ... n ) --> B ) ) |
| 108 |
106 107
|
mpbid |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> F : ( m ... n ) --> B ) |
| 109 |
1 3 83 105 108
|
gsumval2 |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq m ( .+ , F ) ` n ) ) |
| 110 |
|
frn |
|- ( H : ( 1 ... M ) --> A -> ran H C_ A ) |
| 111 |
10 18 110
|
3syl |
|- ( ph -> ran H C_ A ) |
| 112 |
111
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ A ) |
| 113 |
112 84
|
sseqtrd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ ( m ... n ) ) |
| 114 |
|
fzssuz |
|- ( m ... n ) C_ ( ZZ>= ` m ) |
| 115 |
|
uzssz |
|- ( ZZ>= ` m ) C_ ZZ |
| 116 |
|
zssre |
|- ZZ C_ RR |
| 117 |
115 116
|
sstri |
|- ( ZZ>= ` m ) C_ RR |
| 118 |
114 117
|
sstri |
|- ( m ... n ) C_ RR |
| 119 |
113 118
|
sstrdi |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H C_ RR ) |
| 120 |
|
ltso |
|- < Or RR |
| 121 |
|
soss |
|- ( ran H C_ RR -> ( < Or RR -> < Or ran H ) ) |
| 122 |
119 120 121
|
mpisyl |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> < Or ran H ) |
| 123 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
| 124 |
123
|
a1i |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 125 |
19 124
|
fexd |
|- ( ph -> H e. _V ) |
| 126 |
|
f1oen3g |
|- ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) |
| 127 |
125 22 126
|
syl2anc |
|- ( ph -> ( 1 ... M ) ~~ ran H ) |
| 128 |
|
enfi |
|- ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 129 |
127 128
|
syl |
|- ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 130 |
123 129
|
mpbii |
|- ( ph -> ran H e. Fin ) |
| 131 |
130
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ran H e. Fin ) |
| 132 |
|
fz1iso |
|- ( ( < Or ran H /\ ran H e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
| 133 |
122 131 132
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
| 134 |
9
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 135 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
| 136 |
134 135
|
syl |
|- ( ph -> ( # ` ( 1 ... M ) ) = M ) |
| 137 |
124 22
|
hasheqf1od |
|- ( ph -> ( # ` ( 1 ... M ) ) = ( # ` ran H ) ) |
| 138 |
136 137
|
eqtr3d |
|- ( ph -> M = ( # ` ran H ) ) |
| 139 |
138
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M = ( # ` ran H ) ) |
| 140 |
139
|
fveq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. f ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
| 141 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> G e. Mnd ) |
| 142 |
1 3
|
mndcl |
|- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 143 |
142
|
3expb |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 144 |
141 143
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 145 |
8
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 146 |
145
|
sselda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) -> x e. ( Z ` ran F ) ) |
| 147 |
3 4
|
cntzi |
|- ( ( x e. ( Z ` ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
| 148 |
146 147
|
sylan |
|- ( ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ran F ) /\ y e. ran F ) -> ( x .+ y ) = ( y .+ x ) ) |
| 149 |
148
|
anasss |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. ran F /\ y e. ran F ) ) -> ( x .+ y ) = ( y .+ x ) ) |
| 150 |
1 3
|
mndass |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 151 |
141 150
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 152 |
71
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> M e. ( ZZ>= ` 1 ) ) |
| 153 |
7
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> B ) |
| 154 |
153
|
frnd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran F C_ B ) |
| 155 |
|
simprr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) |
| 156 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
| 157 |
155 156
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) |
| 158 |
139
|
oveq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( 1 ... M ) = ( 1 ... ( # ` ran H ) ) ) |
| 159 |
158
|
f1oeq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f : ( 1 ... M ) -1-1-onto-> ran H <-> f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H ) ) |
| 160 |
157 159
|
mpbird |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) -1-1-onto-> ran H ) |
| 161 |
|
f1ocnv |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
| 162 |
160 161
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H -1-1-onto-> ( 1 ... M ) ) |
| 163 |
22
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 164 |
|
f1oco |
|- ( ( `' f : ran H -1-1-onto-> ( 1 ... M ) /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 165 |
162 163 164
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 166 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 167 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
| 168 |
166 167
|
sylib |
|- ( F : A --> B -> F : A -onto-> ran F ) |
| 169 |
|
fof |
|- ( F : A -onto-> ran F -> F : A --> ran F ) |
| 170 |
153 168 169
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> F : A --> ran F ) |
| 171 |
|
f1of |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> f : ( 1 ... M ) --> ran H ) |
| 172 |
160 171
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> ran H ) |
| 173 |
111
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ A ) |
| 174 |
172 173
|
fssd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... M ) --> A ) |
| 175 |
|
fco |
|- ( ( F : A --> ran F /\ f : ( 1 ... M ) --> A ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
| 176 |
170 174 175
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. f ) : ( 1 ... M ) --> ran F ) |
| 177 |
176
|
ffvelcdmda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. f ) ` x ) e. ran F ) |
| 178 |
|
f1ococnv2 |
|- ( f : ( 1 ... M ) -1-1-onto-> ran H -> ( f o. `' f ) = ( _I |` ran H ) ) |
| 179 |
160 178
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( f o. `' f ) = ( _I |` ran H ) ) |
| 180 |
179
|
coeq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( f o. `' f ) o. H ) = ( ( _I |` ran H ) o. H ) ) |
| 181 |
|
f1of |
|- ( H : ( 1 ... M ) -1-1-onto-> ran H -> H : ( 1 ... M ) --> ran H ) |
| 182 |
|
fcoi2 |
|- ( H : ( 1 ... M ) --> ran H -> ( ( _I |` ran H ) o. H ) = H ) |
| 183 |
163 181 182
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( _I |` ran H ) o. H ) = H ) |
| 184 |
180 183
|
eqtr2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( ( f o. `' f ) o. H ) ) |
| 185 |
|
coass |
|- ( ( f o. `' f ) o. H ) = ( f o. ( `' f o. H ) ) |
| 186 |
184 185
|
eqtrdi |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H = ( f o. ( `' f o. H ) ) ) |
| 187 |
186
|
coeq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( F o. ( f o. ( `' f o. H ) ) ) ) |
| 188 |
|
coass |
|- ( ( F o. f ) o. ( `' f o. H ) ) = ( F o. ( f o. ( `' f o. H ) ) ) |
| 189 |
187 188
|
eqtr4di |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( F o. H ) = ( ( F o. f ) o. ( `' f o. H ) ) ) |
| 190 |
189
|
fveq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
| 191 |
190
|
adantr |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) ) |
| 192 |
|
f1of |
|- ( `' f : ran H -1-1-onto-> ( 1 ... M ) -> `' f : ran H --> ( 1 ... M ) ) |
| 193 |
160 161 192
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> `' f : ran H --> ( 1 ... M ) ) |
| 194 |
163 181
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> H : ( 1 ... M ) --> ran H ) |
| 195 |
|
fco |
|- ( ( `' f : ran H --> ( 1 ... M ) /\ H : ( 1 ... M ) --> ran H ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
| 196 |
193 194 195
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) ) |
| 197 |
|
fvco3 |
|- ( ( ( `' f o. H ) : ( 1 ... M ) --> ( 1 ... M ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
| 198 |
196 197
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( ( F o. f ) o. ( `' f o. H ) ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
| 199 |
191 198
|
eqtrd |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ k e. ( 1 ... M ) ) -> ( ( F o. H ) ` k ) = ( ( F o. f ) ` ( ( `' f o. H ) ` k ) ) ) |
| 200 |
144 149 151 152 154 165 177 199
|
seqf1o |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. f ) ) ` M ) ) |
| 201 |
1 3 2
|
mndlid |
|- ( ( G e. Mnd /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 202 |
141 201
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 203 |
1 3 2
|
mndrid |
|- ( ( G e. Mnd /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 204 |
141 203
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 205 |
141 66
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> .0. e. B ) |
| 206 |
|
fdm |
|- ( H : ( 1 ... M ) --> A -> dom H = ( 1 ... M ) ) |
| 207 |
10 18 206
|
3syl |
|- ( ph -> dom H = ( 1 ... M ) ) |
| 208 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... M ) ) |
| 209 |
|
ne0i |
|- ( 1 e. ( 1 ... M ) -> ( 1 ... M ) =/= (/) ) |
| 210 |
71 208 209
|
3syl |
|- ( ph -> ( 1 ... M ) =/= (/) ) |
| 211 |
207 210
|
eqnetrd |
|- ( ph -> dom H =/= (/) ) |
| 212 |
|
dm0rn0 |
|- ( dom H = (/) <-> ran H = (/) ) |
| 213 |
212
|
necon3bii |
|- ( dom H =/= (/) <-> ran H =/= (/) ) |
| 214 |
211 213
|
sylib |
|- ( ph -> ran H =/= (/) ) |
| 215 |
214
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H =/= (/) ) |
| 216 |
113
|
adantrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ran H C_ ( m ... n ) ) |
| 217 |
|
simprl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> A = ( m ... n ) ) |
| 218 |
217
|
eleq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. A <-> x e. ( m ... n ) ) ) |
| 219 |
218
|
biimpar |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> x e. A ) |
| 220 |
153
|
ffvelcdmda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. A ) -> ( F ` x ) e. B ) |
| 221 |
219 220
|
syldan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( m ... n ) ) -> ( F ` x ) e. B ) |
| 222 |
217
|
difeq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( A \ ran H ) = ( ( m ... n ) \ ran H ) ) |
| 223 |
222
|
eleq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( x e. ( A \ ran H ) <-> x e. ( ( m ... n ) \ ran H ) ) ) |
| 224 |
223
|
biimpar |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> x e. ( A \ ran H ) ) |
| 225 |
56
|
ad4ant14 |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( A \ ran H ) ) -> ( F ` x ) = .0. ) |
| 226 |
224 225
|
syldan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ x e. ( ( m ... n ) \ ran H ) ) -> ( F ` x ) = .0. ) |
| 227 |
|
f1of |
|- ( f : ( 1 ... ( # ` ran H ) ) -1-1-onto-> ran H -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
| 228 |
155 156 227
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> f : ( 1 ... ( # ` ran H ) ) --> ran H ) |
| 229 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` ran H ) ) --> ran H /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
| 230 |
228 229
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) /\ y e. ( 1 ... ( # ` ran H ) ) ) -> ( ( F o. f ) ` y ) = ( F ` ( f ` y ) ) ) |
| 231 |
202 204 144 205 155 215 216 221 226 230
|
seqcoll2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq m ( .+ , F ) ` n ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ran H ) ) ) |
| 232 |
140 200 231
|
3eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( A = ( m ... n ) /\ f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
| 233 |
232
|
expr |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
| 234 |
233
|
exlimdv |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` ran H ) ) , ran H ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) ) |
| 235 |
133 234
|
mpd |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq m ( .+ , F ) ` n ) ) |
| 236 |
109 235
|
eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ A = ( m ... n ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 237 |
236
|
ex |
|- ( ( ph /\ W =/= (/) ) -> ( A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 238 |
237
|
rexlimdvw |
|- ( ( ph /\ W =/= (/) ) -> ( E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 239 |
238
|
rexlimdvw |
|- ( ( ph /\ W =/= (/) ) -> ( E. m e. ZZ E. n e. ZZ A = ( m ... n ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 240 |
82 239
|
biimtrid |
|- ( ( ph /\ W =/= (/) ) -> ( A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 241 |
|
suppssdm |
|- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
| 242 |
12 241
|
eqsstri |
|- W C_ dom ( F o. H ) |
| 243 |
242 37
|
fssdm |
|- ( ph -> W C_ ( 1 ... M ) ) |
| 244 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
| 245 |
|
nnssre |
|- NN C_ RR |
| 246 |
244 245
|
sstri |
|- ( 1 ... M ) C_ RR |
| 247 |
243 246
|
sstrdi |
|- ( ph -> W C_ RR ) |
| 248 |
|
soss |
|- ( W C_ RR -> ( < Or RR -> < Or W ) ) |
| 249 |
247 120 248
|
mpisyl |
|- ( ph -> < Or W ) |
| 250 |
|
ssfi |
|- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
| 251 |
123 243 250
|
sylancr |
|- ( ph -> W e. Fin ) |
| 252 |
|
fz1iso |
|- ( ( < Or W /\ W e. Fin ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 253 |
249 251 252
|
syl2anc |
|- ( ph -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 254 |
253
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 255 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
| 256 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) |
| 257 |
256 201
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 258 |
256 203
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 259 |
256 143
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 260 |
256 66
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. B ) |
| 261 |
|
simprr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) |
| 262 |
|
simplr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W =/= (/) ) |
| 263 |
243
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
| 264 |
37
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 265 |
264
|
ffvelcdmda |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( 1 ... M ) ) -> ( ( F o. H ) ` x ) e. B ) |
| 266 |
39
|
a1i |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F o. H ) supp .0. ) C_ W ) |
| 267 |
|
ovexd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( 1 ... M ) e. _V ) |
| 268 |
42
|
a1i |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> .0. e. _V ) |
| 269 |
264 266 267 268
|
suppssr |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ x e. ( ( 1 ... M ) \ W ) ) -> ( ( F o. H ) ` x ) = .0. ) |
| 270 |
|
coass |
|- ( ( F o. H ) o. f ) = ( F o. ( H o. f ) ) |
| 271 |
270
|
fveq1i |
|- ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. ( H o. f ) ) ` y ) |
| 272 |
|
isof1o |
|- ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) |
| 273 |
|
f1of |
|- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) |
| 274 |
261 272 273
|
3syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f : ( 1 ... ( # ` W ) ) --> W ) |
| 275 |
|
fvco3 |
|- ( ( f : ( 1 ... ( # ` W ) ) --> W /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
| 276 |
274 275
|
sylan |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. H ) o. f ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
| 277 |
271 276
|
eqtr3id |
|- ( ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) /\ y e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. ( H o. f ) ) ` y ) = ( ( F o. H ) ` ( f ` y ) ) ) |
| 278 |
257 258 259 260 261 262 263 265 269 277
|
seqcoll2 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. H ) ) ` M ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
| 279 |
255 278
|
eqtr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 280 |
279
|
expr |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 281 |
280
|
exlimdv |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( E. f f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 282 |
254 281
|
mpd |
|- ( ( ( ph /\ W =/= (/) ) /\ -. A e. ran ... ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 283 |
282
|
ex |
|- ( ( ph /\ W =/= (/) ) -> ( -. A e. ran ... -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) ) |
| 284 |
240 283
|
pm2.61d |
|- ( ( ph /\ W =/= (/) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |
| 285 |
78 284
|
pm2.61dane |
|- ( ph -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. H ) ) ` M ) ) |