| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumval3.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsumval3.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | gsumval3.z |  |-  Z = ( Cntz ` G ) | 
						
							| 5 |  | gsumval3.g |  |-  ( ph -> G e. Mnd ) | 
						
							| 6 |  | gsumval3.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | gsumval3.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 |  | gsumval3.c |  |-  ( ph -> ran F C_ ( Z ` ran F ) ) | 
						
							| 9 |  | gsumval3a.t |  |-  ( ph -> W e. Fin ) | 
						
							| 10 |  | gsumval3a.n |  |-  ( ph -> W =/= (/) ) | 
						
							| 11 |  | gsumval3a.w |  |-  W = ( F supp .0. ) | 
						
							| 12 |  | gsumval3a.i |  |-  ( ph -> -. A e. ran ... ) | 
						
							| 13 |  | eqid |  |-  { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } = { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } | 
						
							| 14 | 11 | a1i |  |-  ( ph -> W = ( F supp .0. ) ) | 
						
							| 15 | 7 6 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 16 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 17 |  | suppimacnv |  |-  ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 19 | 1 2 3 13 | gsumvallem2 |  |-  ( G e. Mnd -> { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } = { .0. } ) | 
						
							| 20 | 5 19 | syl |  |-  ( ph -> { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } = { .0. } ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ph -> { .0. } = { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) | 
						
							| 22 | 21 | difeq2d |  |-  ( ph -> ( _V \ { .0. } ) = ( _V \ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) ) | 
						
							| 23 | 22 | imaeq2d |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( `' F " ( _V \ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) ) ) | 
						
							| 24 | 14 18 23 | 3eqtrd |  |-  ( ph -> W = ( `' F " ( _V \ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) ) ) | 
						
							| 25 | 1 2 3 13 24 5 6 7 | gsumval |  |-  ( ph -> ( G gsum F ) = if ( ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) ) | 
						
							| 26 | 20 | sseq2d |  |-  ( ph -> ( ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } <-> ran F C_ { .0. } ) ) | 
						
							| 27 | 11 | a1i |  |-  ( ( ph /\ ran F C_ { .0. } ) -> W = ( F supp .0. ) ) | 
						
							| 28 | 7 6 | jca |  |-  ( ph -> ( F : A --> B /\ A e. V ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ ran F C_ { .0. } ) -> ( F : A --> B /\ A e. V ) ) | 
						
							| 30 |  | fex |  |-  ( ( F : A --> B /\ A e. V ) -> F e. _V ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( ph /\ ran F C_ { .0. } ) -> F e. _V ) | 
						
							| 32 | 31 16 17 | sylancl |  |-  ( ( ph /\ ran F C_ { .0. } ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 33 | 7 | ffnd |  |-  ( ph -> F Fn A ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ran F C_ { .0. } ) -> F Fn A ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ ran F C_ { .0. } ) -> ran F C_ { .0. } ) | 
						
							| 36 |  | df-f |  |-  ( F : A --> { .0. } <-> ( F Fn A /\ ran F C_ { .0. } ) ) | 
						
							| 37 | 34 35 36 | sylanbrc |  |-  ( ( ph /\ ran F C_ { .0. } ) -> F : A --> { .0. } ) | 
						
							| 38 |  | disjdif |  |-  ( { .0. } i^i ( _V \ { .0. } ) ) = (/) | 
						
							| 39 |  | fimacnvdisj |  |-  ( ( F : A --> { .0. } /\ ( { .0. } i^i ( _V \ { .0. } ) ) = (/) ) -> ( `' F " ( _V \ { .0. } ) ) = (/) ) | 
						
							| 40 | 37 38 39 | sylancl |  |-  ( ( ph /\ ran F C_ { .0. } ) -> ( `' F " ( _V \ { .0. } ) ) = (/) ) | 
						
							| 41 | 27 32 40 | 3eqtrd |  |-  ( ( ph /\ ran F C_ { .0. } ) -> W = (/) ) | 
						
							| 42 | 41 | ex |  |-  ( ph -> ( ran F C_ { .0. } -> W = (/) ) ) | 
						
							| 43 | 26 42 | sylbid |  |-  ( ph -> ( ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } -> W = (/) ) ) | 
						
							| 44 | 43 | necon3ad |  |-  ( ph -> ( W =/= (/) -> -. ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) ) | 
						
							| 45 | 10 44 | mpd |  |-  ( ph -> -. ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } ) | 
						
							| 46 | 45 | iffalsed |  |-  ( ph -> if ( ran F C_ { z e. B | A. y e. B ( ( z .+ y ) = y /\ ( y .+ z ) = y ) } , .0. , if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) = if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) ) | 
						
							| 47 | 12 | iffalsed |  |-  ( ph -> if ( A e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ x = ( seq m ( .+ , F ) ` n ) ) ) , ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) = ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) | 
						
							| 48 | 25 46 47 | 3eqtrd |  |-  ( ph -> ( G gsum F ) = ( iota x E. f ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W /\ x = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) ) ) |