| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumval3.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsumval3.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | gsumval3.z |  |-  Z = ( Cntz ` G ) | 
						
							| 5 |  | gsumval3.g |  |-  ( ph -> G e. Mnd ) | 
						
							| 6 |  | gsumval3.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | gsumval3.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 |  | gsumval3.c |  |-  ( ph -> ran F C_ ( Z ` ran F ) ) | 
						
							| 9 |  | gsumval3.m |  |-  ( ph -> M e. NN ) | 
						
							| 10 |  | gsumval3.h |  |-  ( ph -> H : ( 1 ... M ) -1-1-> A ) | 
						
							| 11 |  | gsumval3.n |  |-  ( ph -> ( F supp .0. ) C_ ran H ) | 
						
							| 12 |  | gsumval3.w |  |-  W = ( ( F o. H ) supp .0. ) | 
						
							| 13 | 10 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> H : ( 1 ... M ) -1-1-> A ) | 
						
							| 14 |  | suppssdm |  |-  ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) | 
						
							| 15 | 12 14 | eqsstri |  |-  W C_ dom ( F o. H ) | 
						
							| 16 |  | f1f |  |-  ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) | 
						
							| 17 | 10 16 | syl |  |-  ( ph -> H : ( 1 ... M ) --> A ) | 
						
							| 18 |  | fco |  |-  ( ( F : A --> B /\ H : ( 1 ... M ) --> A ) -> ( F o. H ) : ( 1 ... M ) --> B ) | 
						
							| 19 | 7 17 18 | syl2anc |  |-  ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) | 
						
							| 20 | 15 19 | fssdm |  |-  ( ph -> W C_ ( 1 ... M ) ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) | 
						
							| 22 |  | f1ores |  |-  ( ( H : ( 1 ... M ) -1-1-> A /\ W C_ ( 1 ... M ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) | 
						
							| 23 | 13 21 22 | syl2anc |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) | 
						
							| 24 | 12 | imaeq2i |  |-  ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) | 
						
							| 25 | 7 6 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 26 |  | ovex |  |-  ( 1 ... M ) e. _V | 
						
							| 27 |  | fex |  |-  ( ( H : ( 1 ... M ) --> A /\ ( 1 ... M ) e. _V ) -> H e. _V ) | 
						
							| 28 | 16 26 27 | sylancl |  |-  ( H : ( 1 ... M ) -1-1-> A -> H e. _V ) | 
						
							| 29 | 10 28 | syl |  |-  ( ph -> H e. _V ) | 
						
							| 30 |  | f1fun |  |-  ( H : ( 1 ... M ) -1-1-> A -> Fun H ) | 
						
							| 31 | 10 30 | syl |  |-  ( ph -> Fun H ) | 
						
							| 32 | 31 11 | jca |  |-  ( ph -> ( Fun H /\ ( F supp .0. ) C_ ran H ) ) | 
						
							| 33 | 25 29 32 | jca31 |  |-  ( ph -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) | 
						
							| 35 |  | imacosupp |  |-  ( ( F e. _V /\ H e. _V ) -> ( ( Fun H /\ ( F supp .0. ) C_ ran H ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) ) | 
						
							| 36 | 35 | imp |  |-  ( ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) | 
						
							| 37 | 34 36 | syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) | 
						
							| 38 | 24 37 | eqtrid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) | 
						
							| 39 | 38 | f1oeq3d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 40 | 23 39 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) | 
						
							| 41 |  | isof1o |  |-  ( f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) | 
						
							| 42 | 41 | ad2antll |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) | 
						
							| 43 |  | f1oco |  |-  ( ( ( H |` W ) : W -1-1-onto-> ( F supp .0. ) /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) -> ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) | 
						
							| 44 | 40 42 43 | syl2anc |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) | 
						
							| 45 |  | f1of |  |-  ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) --> W ) | 
						
							| 46 |  | frn |  |-  ( f : ( 1 ... ( # ` W ) ) --> W -> ran f C_ W ) | 
						
							| 47 | 42 45 46 | 3syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran f C_ W ) | 
						
							| 48 |  | cores |  |-  ( ran f C_ W -> ( ( H |` W ) o. f ) = ( H o. f ) ) | 
						
							| 49 |  | f1oeq1 |  |-  ( ( ( H |` W ) o. f ) = ( H o. f ) -> ( ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 50 | 47 48 49 | 3syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( ( H |` W ) o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 51 | 44 50 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) ) | 
						
							| 52 |  | fzfi |  |-  ( 1 ... M ) e. Fin | 
						
							| 53 |  | ssfi |  |-  ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) | 
						
							| 54 | 52 20 53 | sylancr |  |-  ( ph -> W e. Fin ) | 
						
							| 55 | 54 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W e. Fin ) | 
						
							| 56 | 12 | a1i |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W = ( ( F o. H ) supp .0. ) ) | 
						
							| 57 | 56 | imaeq2d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) ) | 
						
							| 58 | 52 | a1i |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 59 | 17 58 | fexd |  |-  ( ph -> H e. _V ) | 
						
							| 60 | 25 59 32 | jca31 |  |-  ( ph -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) | 
						
							| 61 | 60 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( F e. _V /\ H e. _V ) /\ ( Fun H /\ ( F supp .0. ) C_ ran H ) ) ) | 
						
							| 62 | 61 36 | syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) | 
						
							| 63 | 57 62 | eqtrd |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) | 
						
							| 64 | 63 | f1oeq3d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 65 | 23 64 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) | 
						
							| 66 | 55 65 | hasheqf1od |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( # ` W ) = ( # ` ( F supp .0. ) ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( 1 ... ( # ` W ) ) = ( 1 ... ( # ` ( F supp .0. ) ) ) ) | 
						
							| 68 | 67 | f1oeq2d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H o. f ) : ( 1 ... ( # ` W ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 69 | 51 68 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) |