| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumval3.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsumval3.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | gsumval3.z |  |-  Z = ( Cntz ` G ) | 
						
							| 5 |  | gsumval3.g |  |-  ( ph -> G e. Mnd ) | 
						
							| 6 |  | gsumval3.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | gsumval3.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 |  | gsumval3.c |  |-  ( ph -> ran F C_ ( Z ` ran F ) ) | 
						
							| 9 |  | gsumval3.m |  |-  ( ph -> M e. NN ) | 
						
							| 10 |  | gsumval3.h |  |-  ( ph -> H : ( 1 ... M ) -1-1-> A ) | 
						
							| 11 |  | gsumval3.n |  |-  ( ph -> ( F supp .0. ) C_ ran H ) | 
						
							| 12 |  | gsumval3.w |  |-  W = ( ( F o. H ) supp .0. ) | 
						
							| 13 |  | f1f |  |-  ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) | 
						
							| 14 | 10 13 | syl |  |-  ( ph -> H : ( 1 ... M ) --> A ) | 
						
							| 15 |  | fzfid |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 16 | 14 15 | fexd |  |-  ( ph -> H e. _V ) | 
						
							| 17 |  | vex |  |-  f e. _V | 
						
							| 18 |  | coexg |  |-  ( ( H e. _V /\ f e. _V ) -> ( H o. f ) e. _V ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( ph -> ( H o. f ) e. _V ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) e. _V ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem1 |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) | 
						
							| 22 |  | fzfi |  |-  ( 1 ... M ) e. Fin | 
						
							| 23 |  | suppssdm |  |-  ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) | 
						
							| 24 | 12 23 | eqsstri |  |-  W C_ dom ( F o. H ) | 
						
							| 25 | 7 14 | fcod |  |-  ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) | 
						
							| 26 | 24 25 | fssdm |  |-  ( ph -> W C_ ( 1 ... M ) ) | 
						
							| 27 |  | ssfi |  |-  ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) | 
						
							| 28 | 22 26 27 | sylancr |  |-  ( ph -> W e. Fin ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W e. Fin ) | 
						
							| 30 | 10 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> H : ( 1 ... M ) -1-1-> A ) | 
						
							| 31 | 26 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) | 
						
							| 32 |  | f1ores |  |-  ( ( H : ( 1 ... M ) -1-1-> A /\ W C_ ( 1 ... M ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) | 
						
							| 33 | 30 31 32 | syl2anc |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) | 
						
							| 34 | 12 | imaeq2i |  |-  ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) | 
						
							| 35 | 7 6 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 36 |  | ovex |  |-  ( 1 ... M ) e. _V | 
						
							| 37 |  | fex |  |-  ( ( H : ( 1 ... M ) --> A /\ ( 1 ... M ) e. _V ) -> H e. _V ) | 
						
							| 38 | 14 36 37 | sylancl |  |-  ( ph -> H e. _V ) | 
						
							| 39 | 35 38 | jca |  |-  ( ph -> ( F e. _V /\ H e. _V ) ) | 
						
							| 40 |  | f1fun |  |-  ( H : ( 1 ... M ) -1-1-> A -> Fun H ) | 
						
							| 41 | 10 40 | syl |  |-  ( ph -> Fun H ) | 
						
							| 42 | 41 11 | jca |  |-  ( ph -> ( Fun H /\ ( F supp .0. ) C_ ran H ) ) | 
						
							| 43 |  | imacosupp |  |-  ( ( F e. _V /\ H e. _V ) -> ( ( Fun H /\ ( F supp .0. ) C_ ran H ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) ) | 
						
							| 44 | 39 42 43 | sylc |  |-  ( ph -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ph /\ W =/= (/) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) | 
						
							| 46 | 34 45 | eqtrid |  |-  ( ( ph /\ W =/= (/) ) -> ( H " W ) = ( F supp .0. ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) | 
						
							| 48 | 47 | f1oeq3d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 49 | 33 48 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) | 
						
							| 50 | 29 49 | hasheqf1od |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( # ` W ) = ( # ` ( F supp .0. ) ) ) | 
						
							| 51 | 50 | fveq2d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) | 
						
							| 52 | 21 51 | jca |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) | 
						
							| 53 |  | f1oeq1 |  |-  ( g = ( H o. f ) -> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) | 
						
							| 54 |  | coeq2 |  |-  ( g = ( H o. f ) -> ( F o. g ) = ( F o. ( H o. f ) ) ) | 
						
							| 55 | 54 | seqeq3d |  |-  ( g = ( H o. f ) -> seq 1 ( .+ , ( F o. g ) ) = seq 1 ( .+ , ( F o. ( H o. f ) ) ) ) | 
						
							| 56 | 55 | fveq1d |  |-  ( g = ( H o. f ) -> ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) | 
						
							| 57 | 56 | eqeq2d |  |-  ( g = ( H o. f ) -> ( ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) | 
						
							| 58 | 53 57 | anbi12d |  |-  ( g = ( H o. f ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) | 
						
							| 59 | 20 52 58 | spcedv |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) | 
						
							| 60 | 5 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) | 
						
							| 61 | 6 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A e. V ) | 
						
							| 62 | 7 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> F : A --> B ) | 
						
							| 63 | 8 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran F C_ ( Z ` ran F ) ) | 
						
							| 64 |  | f1f1orn |  |-  ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) | 
						
							| 65 | 10 64 | syl |  |-  ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) | 
						
							| 66 |  | f1oen3g |  |-  ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) | 
						
							| 67 | 16 65 66 | syl2anc |  |-  ( ph -> ( 1 ... M ) ~~ ran H ) | 
						
							| 68 |  | enfi |  |-  ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) | 
						
							| 70 | 22 69 | mpbii |  |-  ( ph -> ran H e. Fin ) | 
						
							| 71 | 70 11 | ssfid |  |-  ( ph -> ( F supp .0. ) e. Fin ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) e. Fin ) | 
						
							| 73 | 12 | neeq1i |  |-  ( W =/= (/) <-> ( ( F o. H ) supp .0. ) =/= (/) ) | 
						
							| 74 |  | supp0cosupp0 |  |-  ( ( F e. _V /\ H e. _V ) -> ( ( F supp .0. ) = (/) -> ( ( F o. H ) supp .0. ) = (/) ) ) | 
						
							| 75 | 74 | necon3d |  |-  ( ( F e. _V /\ H e. _V ) -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) | 
						
							| 76 | 35 38 75 | syl2anc |  |-  ( ph -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) | 
						
							| 77 | 73 76 | biimtrid |  |-  ( ph -> ( W =/= (/) -> ( F supp .0. ) =/= (/) ) ) | 
						
							| 78 | 77 | imp |  |-  ( ( ph /\ W =/= (/) ) -> ( F supp .0. ) =/= (/) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) =/= (/) ) | 
						
							| 80 | 11 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ ran H ) | 
						
							| 81 | 14 | frnd |  |-  ( ph -> ran H C_ A ) | 
						
							| 82 | 81 | ad2antrr |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran H C_ A ) | 
						
							| 83 | 80 82 | sstrd |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ A ) | 
						
							| 84 | 1 2 3 4 60 61 62 63 72 79 83 | gsumval3eu |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) | 
						
							| 85 |  | iota1 |  |-  ( E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) | 
						
							| 86 | 84 85 | syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) | 
						
							| 87 |  | eqid |  |-  ( F supp .0. ) = ( F supp .0. ) | 
						
							| 88 |  | simprl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> -. A e. ran ... ) | 
						
							| 89 | 1 2 3 4 60 61 62 63 72 79 87 88 | gsumval3a |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) | 
						
							| 90 | 89 | eqeq1d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( G gsum F ) = x <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) | 
						
							| 91 | 86 90 | bitr4d |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) | 
						
							| 92 | 91 | alrimiv |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) | 
						
							| 93 |  | fvex |  |-  ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) e. _V | 
						
							| 94 |  | eqeq1 |  |-  ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) | 
						
							| 95 | 94 | anbi2d |  |-  ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) | 
						
							| 96 | 95 | exbidv |  |-  ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) | 
						
							| 97 |  | eqeq2 |  |-  ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( G gsum F ) = x <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) | 
						
							| 98 | 96 97 | bibi12d |  |-  ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) <-> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) ) | 
						
							| 99 | 93 98 | spcv |  |-  ( A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) | 
						
							| 100 | 92 99 | syl |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) | 
						
							| 101 | 59 100 | mpbid |  |-  ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |