| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumvallem2.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumvallem2.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumvallem2.p |
|- .+ = ( +g ` G ) |
| 4 |
|
gsumvallem2.o |
|- O = { x e. B | A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) } |
| 5 |
1 2 3 4
|
mgmidsssn0 |
|- ( G e. Mnd -> O C_ { .0. } ) |
| 6 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
| 7 |
1 3 2
|
mndlrid |
|- ( ( G e. Mnd /\ y e. B ) -> ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) |
| 8 |
7
|
ralrimiva |
|- ( G e. Mnd -> A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) |
| 9 |
|
oveq1 |
|- ( x = .0. -> ( x .+ y ) = ( .0. .+ y ) ) |
| 10 |
9
|
eqeq1d |
|- ( x = .0. -> ( ( x .+ y ) = y <-> ( .0. .+ y ) = y ) ) |
| 11 |
10
|
ovanraleqv |
|- ( x = .0. -> ( A. y e. B ( ( x .+ y ) = y /\ ( y .+ x ) = y ) <-> A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) ) |
| 12 |
11 4
|
elrab2 |
|- ( .0. e. O <-> ( .0. e. B /\ A. y e. B ( ( .0. .+ y ) = y /\ ( y .+ .0. ) = y ) ) ) |
| 13 |
6 8 12
|
sylanbrc |
|- ( G e. Mnd -> .0. e. O ) |
| 14 |
13
|
snssd |
|- ( G e. Mnd -> { .0. } C_ O ) |
| 15 |
5 14
|
eqssd |
|- ( G e. Mnd -> O = { .0. } ) |