| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumvsmul.b |
|- B = ( Base ` R ) |
| 2 |
|
gsumvsmul.s |
|- S = ( Scalar ` R ) |
| 3 |
|
gsumvsmul.k |
|- K = ( Base ` S ) |
| 4 |
|
gsumvsmul.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
gsumvsmul.p |
|- .+ = ( +g ` R ) |
| 6 |
|
gsumvsmul.t |
|- .x. = ( .s ` R ) |
| 7 |
|
gsumvsmul.r |
|- ( ph -> R e. LMod ) |
| 8 |
|
gsumvsmul.a |
|- ( ph -> A e. V ) |
| 9 |
|
gsumvsmul.x |
|- ( ph -> X e. K ) |
| 10 |
|
gsumvsmul.y |
|- ( ( ph /\ k e. A ) -> Y e. B ) |
| 11 |
|
gsumvsmul.n |
|- ( ph -> ( k e. A |-> Y ) finSupp .0. ) |
| 12 |
|
lmodcmn |
|- ( R e. LMod -> R e. CMnd ) |
| 13 |
7 12
|
syl |
|- ( ph -> R e. CMnd ) |
| 14 |
|
cmnmnd |
|- ( R e. CMnd -> R e. Mnd ) |
| 15 |
13 14
|
syl |
|- ( ph -> R e. Mnd ) |
| 16 |
1 2 6 3
|
lmodvsghm |
|- ( ( R e. LMod /\ X e. K ) -> ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) ) |
| 17 |
7 9 16
|
syl2anc |
|- ( ph -> ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) ) |
| 18 |
|
ghmmhm |
|- ( ( y e. B |-> ( X .x. y ) ) e. ( R GrpHom R ) -> ( y e. B |-> ( X .x. y ) ) e. ( R MndHom R ) ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( y e. B |-> ( X .x. y ) ) e. ( R MndHom R ) ) |
| 20 |
|
oveq2 |
|- ( y = Y -> ( X .x. y ) = ( X .x. Y ) ) |
| 21 |
|
oveq2 |
|- ( y = ( R gsum ( k e. A |-> Y ) ) -> ( X .x. y ) = ( X .x. ( R gsum ( k e. A |-> Y ) ) ) ) |
| 22 |
1 4 13 15 8 19 10 11 20 21
|
gsummhm2 |
|- ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( X .x. ( R gsum ( k e. A |-> Y ) ) ) ) |