Metamath Proof Explorer


Theorem gsumwcl

Description: Closure of the composite of a word in a structure G . (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Hypothesis gsumwcl.b
|- B = ( Base ` G )
Assertion gsumwcl
|- ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B )

Proof

Step Hyp Ref Expression
1 gsumwcl.b
 |-  B = ( Base ` G )
2 1 submid
 |-  ( G e. Mnd -> B e. ( SubMnd ` G ) )
3 gsumwsubmcl
 |-  ( ( B e. ( SubMnd ` G ) /\ W e. Word B ) -> ( G gsum W ) e. B )
4 2 3 sylan
 |-  ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B )