Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwcl.b |
|- B = ( Base ` G ) |
2 |
|
s1val |
|- ( S e. B -> <" S "> = { <. 0 , S >. } ) |
3 |
2
|
oveq2d |
|- ( S e. B -> ( G gsum <" S "> ) = ( G gsum { <. 0 , S >. } ) ) |
4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
5 |
|
elfvdm |
|- ( S e. ( Base ` G ) -> G e. dom Base ) |
6 |
5 1
|
eleq2s |
|- ( S e. B -> G e. dom Base ) |
7 |
|
0nn0 |
|- 0 e. NN0 |
8 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
9 |
7 8
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
10 |
9
|
a1i |
|- ( S e. B -> 0 e. ( ZZ>= ` 0 ) ) |
11 |
|
0z |
|- 0 e. ZZ |
12 |
|
f1osng |
|- ( ( 0 e. ZZ /\ S e. B ) -> { <. 0 , S >. } : { 0 } -1-1-onto-> { S } ) |
13 |
11 12
|
mpan |
|- ( S e. B -> { <. 0 , S >. } : { 0 } -1-1-onto-> { S } ) |
14 |
|
f1of |
|- ( { <. 0 , S >. } : { 0 } -1-1-onto-> { S } -> { <. 0 , S >. } : { 0 } --> { S } ) |
15 |
13 14
|
syl |
|- ( S e. B -> { <. 0 , S >. } : { 0 } --> { S } ) |
16 |
|
snssi |
|- ( S e. B -> { S } C_ B ) |
17 |
15 16
|
fssd |
|- ( S e. B -> { <. 0 , S >. } : { 0 } --> B ) |
18 |
|
fz0sn |
|- ( 0 ... 0 ) = { 0 } |
19 |
18
|
feq2i |
|- ( { <. 0 , S >. } : ( 0 ... 0 ) --> B <-> { <. 0 , S >. } : { 0 } --> B ) |
20 |
17 19
|
sylibr |
|- ( S e. B -> { <. 0 , S >. } : ( 0 ... 0 ) --> B ) |
21 |
1 4 6 10 20
|
gsumval2 |
|- ( S e. B -> ( G gsum { <. 0 , S >. } ) = ( seq 0 ( ( +g ` G ) , { <. 0 , S >. } ) ` 0 ) ) |
22 |
|
fvsng |
|- ( ( 0 e. ZZ /\ S e. B ) -> ( { <. 0 , S >. } ` 0 ) = S ) |
23 |
11 22
|
mpan |
|- ( S e. B -> ( { <. 0 , S >. } ` 0 ) = S ) |
24 |
11 23
|
seq1i |
|- ( S e. B -> ( seq 0 ( ( +g ` G ) , { <. 0 , S >. } ) ` 0 ) = S ) |
25 |
3 21 24
|
3eqtrd |
|- ( S e. B -> ( G gsum <" S "> ) = S ) |