Step |
Hyp |
Ref |
Expression |
1 |
|
gsumccat.b |
|- B = ( Base ` G ) |
2 |
|
gsumccat.p |
|- .+ = ( +g ` G ) |
3 |
|
df-s2 |
|- <" S T "> = ( <" S "> ++ <" T "> ) |
4 |
3
|
a1i |
|- ( ( G e. Mnd /\ S e. B /\ T e. B ) -> <" S T "> = ( <" S "> ++ <" T "> ) ) |
5 |
4
|
oveq2d |
|- ( ( G e. Mnd /\ S e. B /\ T e. B ) -> ( G gsum <" S T "> ) = ( G gsum ( <" S "> ++ <" T "> ) ) ) |
6 |
|
id |
|- ( G e. Mnd -> G e. Mnd ) |
7 |
|
s1cl |
|- ( S e. B -> <" S "> e. Word B ) |
8 |
|
s1cl |
|- ( T e. B -> <" T "> e. Word B ) |
9 |
1 2
|
gsumccat |
|- ( ( G e. Mnd /\ <" S "> e. Word B /\ <" T "> e. Word B ) -> ( G gsum ( <" S "> ++ <" T "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T "> ) ) ) |
10 |
6 7 8 9
|
syl3an |
|- ( ( G e. Mnd /\ S e. B /\ T e. B ) -> ( G gsum ( <" S "> ++ <" T "> ) ) = ( ( G gsum <" S "> ) .+ ( G gsum <" T "> ) ) ) |
11 |
1
|
gsumws1 |
|- ( S e. B -> ( G gsum <" S "> ) = S ) |
12 |
1
|
gsumws1 |
|- ( T e. B -> ( G gsum <" T "> ) = T ) |
13 |
11 12
|
oveqan12d |
|- ( ( S e. B /\ T e. B ) -> ( ( G gsum <" S "> ) .+ ( G gsum <" T "> ) ) = ( S .+ T ) ) |
14 |
13
|
3adant1 |
|- ( ( G e. Mnd /\ S e. B /\ T e. B ) -> ( ( G gsum <" S "> ) .+ ( G gsum <" T "> ) ) = ( S .+ T ) ) |
15 |
5 10 14
|
3eqtrd |
|- ( ( G e. Mnd /\ S e. B /\ T e. B ) -> ( G gsum <" S T "> ) = ( S .+ T ) ) |