Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( W = (/) -> ( G gsum W ) = ( G gsum (/) ) ) |
2 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
3 |
2
|
gsum0 |
|- ( G gsum (/) ) = ( 0g ` G ) |
4 |
1 3
|
eqtrdi |
|- ( W = (/) -> ( G gsum W ) = ( 0g ` G ) ) |
5 |
4
|
eleq1d |
|- ( W = (/) -> ( ( G gsum W ) e. S <-> ( 0g ` G ) e. S ) ) |
6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
|
submrcl |
|- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
9 |
8
|
ad2antrr |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> G e. Mnd ) |
10 |
|
lennncl |
|- ( ( W e. Word S /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
11 |
10
|
adantll |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
12 |
|
nnm1nn0 |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. NN0 ) |
13 |
11 12
|
syl |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
14 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
15 |
13 14
|
eleqtrdi |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) |
16 |
|
wrdf |
|- ( W e. Word S -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
17 |
16
|
ad2antlr |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
18 |
11
|
nnzd |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( # ` W ) e. ZZ ) |
19 |
|
fzoval |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
20 |
18 19
|
syl |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
21 |
20
|
feq2d |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( W : ( 0 ..^ ( # ` W ) ) --> S <-> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> S ) ) |
22 |
17 21
|
mpbid |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> S ) |
23 |
6
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> S C_ ( Base ` G ) ) |
25 |
22 24
|
fssd |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> ( Base ` G ) ) |
26 |
6 7 9 15 25
|
gsumval2 |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( G gsum W ) = ( seq 0 ( ( +g ` G ) , W ) ` ( ( # ` W ) - 1 ) ) ) |
27 |
22
|
ffvelrnda |
|- ( ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( W ` x ) e. S ) |
28 |
7
|
submcl |
|- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) |
29 |
28
|
3expb |
|- ( ( S e. ( SubMnd ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x ( +g ` G ) y ) e. S ) |
30 |
29
|
ad4ant14 |
|- ( ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) /\ ( x e. S /\ y e. S ) ) -> ( x ( +g ` G ) y ) e. S ) |
31 |
15 27 30
|
seqcl |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( seq 0 ( ( +g ` G ) , W ) ` ( ( # ` W ) - 1 ) ) e. S ) |
32 |
26 31
|
eqeltrd |
|- ( ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) /\ W =/= (/) ) -> ( G gsum W ) e. S ) |
33 |
2
|
subm0cl |
|- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) e. S ) |
34 |
33
|
adantr |
|- ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) -> ( 0g ` G ) e. S ) |
35 |
5 32 34
|
pm2.61ne |
|- ( ( S e. ( SubMnd ` G ) /\ W e. Word S ) -> ( G gsum W ) e. S ) |