Step |
Hyp |
Ref |
Expression |
1 |
|
gsumxp2.b |
|- B = ( Base ` G ) |
2 |
|
gsumxp2.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsumxp2.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsumxp2.a |
|- ( ph -> A e. V ) |
5 |
|
gsumxp2.r |
|- ( ph -> C e. W ) |
6 |
|
gsumxp2.f |
|- ( ph -> F : ( A X. C ) --> B ) |
7 |
|
gsumxp2.w |
|- ( ph -> F finSupp .0. ) |
8 |
6
|
fovrnda |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( j F k ) e. B ) |
9 |
7
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
10 |
|
simpl |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ph ) |
11 |
|
opelxpi |
|- ( ( j e. A /\ k e. C ) -> <. j , k >. e. ( A X. C ) ) |
12 |
11
|
ad2antlr |
|- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> <. j , k >. e. ( A X. C ) ) |
13 |
|
simpr |
|- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> -. <. j , k >. e. ( F supp .0. ) ) |
14 |
12 13
|
eldifd |
|- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> <. j , k >. e. ( ( A X. C ) \ ( F supp .0. ) ) ) |
15 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
16 |
4 5
|
xpexd |
|- ( ph -> ( A X. C ) e. _V ) |
17 |
2
|
fvexi |
|- .0. e. _V |
18 |
17
|
a1i |
|- ( ph -> .0. e. _V ) |
19 |
6 15 16 18
|
suppssr |
|- ( ( ph /\ <. j , k >. e. ( ( A X. C ) \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
20 |
10 14 19
|
syl2an2r |
|- ( ( ( ph /\ ( j e. A /\ k e. C ) ) /\ -. <. j , k >. e. ( F supp .0. ) ) -> ( F ` <. j , k >. ) = .0. ) |
21 |
20
|
ex |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. <. j , k >. e. ( F supp .0. ) -> ( F ` <. j , k >. ) = .0. ) ) |
22 |
|
df-br |
|- ( j ( F supp .0. ) k <-> <. j , k >. e. ( F supp .0. ) ) |
23 |
22
|
notbii |
|- ( -. j ( F supp .0. ) k <-> -. <. j , k >. e. ( F supp .0. ) ) |
24 |
|
df-ov |
|- ( j F k ) = ( F ` <. j , k >. ) |
25 |
24
|
eqeq1i |
|- ( ( j F k ) = .0. <-> ( F ` <. j , k >. ) = .0. ) |
26 |
21 23 25
|
3imtr4g |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. j ( F supp .0. ) k -> ( j F k ) = .0. ) ) |
27 |
26
|
impr |
|- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j ( F supp .0. ) k ) ) -> ( j F k ) = .0. ) |
28 |
1 2 3 4 5 8 9 27
|
gsumcom3 |
|- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> ( j F k ) ) ) ) ) ) |
29 |
28
|
eqcomd |
|- ( ph -> ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> ( j F k ) ) ) ) ) ) |