| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzadd.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumzadd.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumzadd.p |
|- .+ = ( +g ` G ) |
| 4 |
|
gsumzadd.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
gsumzadd.g |
|- ( ph -> G e. Mnd ) |
| 6 |
|
gsumzadd.a |
|- ( ph -> A e. V ) |
| 7 |
|
gsumzadd.fn |
|- ( ph -> F finSupp .0. ) |
| 8 |
|
gsumzadd.hn |
|- ( ph -> H finSupp .0. ) |
| 9 |
|
gsumzadd.s |
|- ( ph -> S e. ( SubMnd ` G ) ) |
| 10 |
|
gsumzadd.c |
|- ( ph -> S C_ ( Z ` S ) ) |
| 11 |
|
gsumzadd.f |
|- ( ph -> F : A --> S ) |
| 12 |
|
gsumzadd.h |
|- ( ph -> H : A --> S ) |
| 13 |
|
eqid |
|- ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. ) |
| 14 |
1
|
submss |
|- ( S e. ( SubMnd ` G ) -> S C_ B ) |
| 15 |
9 14
|
syl |
|- ( ph -> S C_ B ) |
| 16 |
11 15
|
fssd |
|- ( ph -> F : A --> B ) |
| 17 |
12 15
|
fssd |
|- ( ph -> H : A --> B ) |
| 18 |
11
|
frnd |
|- ( ph -> ran F C_ S ) |
| 19 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran F C_ S ) -> ran F C_ ( Z ` ran F ) ) |
| 20 |
10 18 19
|
syl2anc |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 21 |
12
|
frnd |
|- ( ph -> ran H C_ S ) |
| 22 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran H C_ S ) -> ran H C_ ( Z ` ran H ) ) |
| 23 |
10 21 22
|
syl2anc |
|- ( ph -> ran H C_ ( Z ` ran H ) ) |
| 24 |
3
|
submcl |
|- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
| 25 |
24
|
3expb |
|- ( ( S e. ( SubMnd ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 26 |
9 25
|
sylan |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 27 |
|
inidm |
|- ( A i^i A ) = A |
| 28 |
26 11 12 6 6 27
|
off |
|- ( ph -> ( F oF .+ H ) : A --> S ) |
| 29 |
28
|
frnd |
|- ( ph -> ran ( F oF .+ H ) C_ S ) |
| 30 |
4
|
cntzidss |
|- ( ( S C_ ( Z ` S ) /\ ran ( F oF .+ H ) C_ S ) -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
| 31 |
10 29 30
|
syl2anc |
|- ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
| 32 |
10
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` S ) ) |
| 33 |
15
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ B ) |
| 34 |
5
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> G e. Mnd ) |
| 35 |
|
vex |
|- x e. _V |
| 36 |
35
|
a1i |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> x e. _V ) |
| 37 |
9
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S e. ( SubMnd ` G ) ) |
| 38 |
|
simpl |
|- ( ( x C_ A /\ k e. ( A \ x ) ) -> x C_ A ) |
| 39 |
|
fssres |
|- ( ( H : A --> S /\ x C_ A ) -> ( H |` x ) : x --> S ) |
| 40 |
12 38 39
|
syl2an |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) : x --> S ) |
| 41 |
23
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran H C_ ( Z ` ran H ) ) |
| 42 |
|
resss |
|- ( H |` x ) C_ H |
| 43 |
42
|
rnssi |
|- ran ( H |` x ) C_ ran H |
| 44 |
4
|
cntzidss |
|- ( ( ran H C_ ( Z ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
| 45 |
41 43 44
|
sylancl |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
| 46 |
12
|
ffund |
|- ( ph -> Fun H ) |
| 47 |
46
|
funresd |
|- ( ph -> Fun ( H |` x ) ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> Fun ( H |` x ) ) |
| 49 |
8
|
fsuppimpd |
|- ( ph -> ( H supp .0. ) e. Fin ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H supp .0. ) e. Fin ) |
| 51 |
12 6
|
fexd |
|- ( ph -> H e. _V ) |
| 52 |
2
|
fvexi |
|- .0. e. _V |
| 53 |
|
ressuppss |
|- ( ( H e. _V /\ .0. e. _V ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
| 54 |
51 52 53
|
sylancl |
|- ( ph -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
| 56 |
50 55
|
ssfid |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) e. Fin ) |
| 57 |
|
resfunexg |
|- ( ( Fun H /\ x e. _V ) -> ( H |` x ) e. _V ) |
| 58 |
46 35 57
|
sylancl |
|- ( ph -> ( H |` x ) e. _V ) |
| 59 |
|
isfsupp |
|- ( ( ( H |` x ) e. _V /\ .0. e. _V ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
| 60 |
58 52 59
|
sylancl |
|- ( ph -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
| 61 |
60
|
adantr |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
| 62 |
48 56 61
|
mpbir2and |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) finSupp .0. ) |
| 63 |
2 4 34 36 37 40 45 62
|
gsumzsubmcl |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( G gsum ( H |` x ) ) e. S ) |
| 64 |
63
|
snssd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ S ) |
| 65 |
1 4
|
cntz2ss |
|- ( ( S C_ B /\ { ( G gsum ( H |` x ) ) } C_ S ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 66 |
33 64 65
|
syl2anc |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 67 |
32 66
|
sstrd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 68 |
|
eldifi |
|- ( k e. ( A \ x ) -> k e. A ) |
| 69 |
68
|
adantl |
|- ( ( x C_ A /\ k e. ( A \ x ) ) -> k e. A ) |
| 70 |
|
ffvelcdm |
|- ( ( F : A --> S /\ k e. A ) -> ( F ` k ) e. S ) |
| 71 |
11 69 70
|
syl2an |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. S ) |
| 72 |
67 71
|
sseldd |
|- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 73 |
1 2 3 4 5 6 7 8 13 16 17 20 23 31 72
|
gsumzaddlem |
|- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |