| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzinv.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumzinv.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumzinv.z |
|- Z = ( Cntz ` G ) |
| 4 |
|
gsumzinv.i |
|- I = ( invg ` G ) |
| 5 |
|
gsumzinv.g |
|- ( ph -> G e. Grp ) |
| 6 |
|
gsumzinv.a |
|- ( ph -> A e. V ) |
| 7 |
|
gsumzinv.f |
|- ( ph -> F : A --> B ) |
| 8 |
|
gsumzinv.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 9 |
|
gsumzinv.n |
|- ( ph -> F finSupp .0. ) |
| 10 |
|
eqid |
|- ( oppG ` G ) = ( oppG ` G ) |
| 11 |
5
|
grpmndd |
|- ( ph -> G e. Mnd ) |
| 12 |
1 4
|
grpinvf |
|- ( G e. Grp -> I : B --> B ) |
| 13 |
5 12
|
syl |
|- ( ph -> I : B --> B ) |
| 14 |
|
fco |
|- ( ( I : B --> B /\ F : A --> B ) -> ( I o. F ) : A --> B ) |
| 15 |
13 7 14
|
syl2anc |
|- ( ph -> ( I o. F ) : A --> B ) |
| 16 |
10 4
|
invoppggim |
|- ( G e. Grp -> I e. ( G GrpIso ( oppG ` G ) ) ) |
| 17 |
|
gimghm |
|- ( I e. ( G GrpIso ( oppG ` G ) ) -> I e. ( G GrpHom ( oppG ` G ) ) ) |
| 18 |
|
ghmmhm |
|- ( I e. ( G GrpHom ( oppG ` G ) ) -> I e. ( G MndHom ( oppG ` G ) ) ) |
| 19 |
5 16 17 18
|
4syl |
|- ( ph -> I e. ( G MndHom ( oppG ` G ) ) ) |
| 20 |
|
eqid |
|- ( Cntz ` ( oppG ` G ) ) = ( Cntz ` ( oppG ` G ) ) |
| 21 |
3 20
|
cntzmhm2 |
|- ( ( I e. ( G MndHom ( oppG ` G ) ) /\ ran F C_ ( Z ` ran F ) ) -> ( I " ran F ) C_ ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) ) |
| 22 |
19 8 21
|
syl2anc |
|- ( ph -> ( I " ran F ) C_ ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) ) |
| 23 |
|
rnco2 |
|- ran ( I o. F ) = ( I " ran F ) |
| 24 |
23
|
fveq2i |
|- ( Z ` ran ( I o. F ) ) = ( Z ` ( I " ran F ) ) |
| 25 |
10 3
|
oppgcntz |
|- ( Z ` ( I " ran F ) ) = ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) |
| 26 |
24 25
|
eqtri |
|- ( Z ` ran ( I o. F ) ) = ( ( Cntz ` ( oppG ` G ) ) ` ( I " ran F ) ) |
| 27 |
22 23 26
|
3sstr4g |
|- ( ph -> ran ( I o. F ) C_ ( Z ` ran ( I o. F ) ) ) |
| 28 |
2
|
fvexi |
|- .0. e. _V |
| 29 |
28
|
a1i |
|- ( ph -> .0. e. _V ) |
| 30 |
1
|
fvexi |
|- B e. _V |
| 31 |
30
|
a1i |
|- ( ph -> B e. _V ) |
| 32 |
2 4
|
grpinvid |
|- ( G e. Grp -> ( I ` .0. ) = .0. ) |
| 33 |
5 32
|
syl |
|- ( ph -> ( I ` .0. ) = .0. ) |
| 34 |
29 7 13 6 31 9 33
|
fsuppco2 |
|- ( ph -> ( I o. F ) finSupp .0. ) |
| 35 |
1 2 3 10 11 6 15 27 34
|
gsumzoppg |
|- ( ph -> ( ( oppG ` G ) gsum ( I o. F ) ) = ( G gsum ( I o. F ) ) ) |
| 36 |
10
|
oppgmnd |
|- ( G e. Mnd -> ( oppG ` G ) e. Mnd ) |
| 37 |
11 36
|
syl |
|- ( ph -> ( oppG ` G ) e. Mnd ) |
| 38 |
1 3 11 37 6 19 7 8 2 9
|
gsumzmhm |
|- ( ph -> ( ( oppG ` G ) gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
| 39 |
35 38
|
eqtr3d |
|- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |