| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzmhm.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumzmhm.z |  |-  Z = ( Cntz ` G ) | 
						
							| 3 |  | gsumzmhm.g |  |-  ( ph -> G e. Mnd ) | 
						
							| 4 |  | gsumzmhm.h |  |-  ( ph -> H e. Mnd ) | 
						
							| 5 |  | gsumzmhm.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | gsumzmhm.k |  |-  ( ph -> K e. ( G MndHom H ) ) | 
						
							| 7 |  | gsumzmhm.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 |  | gsumzmhm.c |  |-  ( ph -> ran F C_ ( Z ` ran F ) ) | 
						
							| 9 |  | gsumzmhm.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 10 |  | gsumzmhm.w |  |-  ( ph -> F finSupp .0. ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` H ) = ( 0g ` H ) | 
						
							| 12 | 11 | gsumz |  |-  ( ( H e. Mnd /\ A e. V ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) | 
						
							| 13 | 4 5 12 | syl2anc |  |-  ( ph -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( 0g ` H ) ) | 
						
							| 15 | 9 11 | mhm0 |  |-  ( K e. ( G MndHom H ) -> ( K ` .0. ) = ( 0g ` H ) ) | 
						
							| 16 | 6 15 | syl |  |-  ( ph -> ( K ` .0. ) = ( 0g ` H ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K ` .0. ) = ( 0g ` H ) ) | 
						
							| 18 | 14 17 | eqtr4d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( k e. A |-> ( 0g ` H ) ) ) = ( K ` .0. ) ) | 
						
							| 19 | 1 9 | mndidcl |  |-  ( G e. Mnd -> .0. e. B ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> .0. e. B ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) /\ k e. A ) -> .0. e. B ) | 
						
							| 22 | 9 | fvexi |  |-  .0. e. _V | 
						
							| 23 | 22 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 24 | 7 5 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 25 |  | suppimacnv |  |-  ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 26 | 24 23 25 | syl2anc |  |-  ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 27 |  | ssid |  |-  ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) | 
						
							| 28 | 26 27 | eqsstrdi |  |-  ( ph -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 29 | 7 5 23 28 | gsumcllem |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> F = ( k e. A |-> .0. ) ) | 
						
							| 30 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 31 | 1 30 | mhmf |  |-  ( K e. ( G MndHom H ) -> K : B --> ( Base ` H ) ) | 
						
							| 32 | 6 31 | syl |  |-  ( ph -> K : B --> ( Base ` H ) ) | 
						
							| 33 | 32 | feqmptd |  |-  ( ph -> K = ( x e. B |-> ( K ` x ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> K = ( x e. B |-> ( K ` x ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = .0. -> ( K ` x ) = ( K ` .0. ) ) | 
						
							| 36 | 21 29 34 35 | fmptco |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K o. F ) = ( k e. A |-> ( K ` .0. ) ) ) | 
						
							| 37 | 16 | mpteq2dv |  |-  ( ph -> ( k e. A |-> ( K ` .0. ) ) = ( k e. A |-> ( 0g ` H ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( k e. A |-> ( K ` .0. ) ) = ( k e. A |-> ( 0g ` H ) ) ) | 
						
							| 39 | 36 38 | eqtrd |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K o. F ) = ( k e. A |-> ( 0g ` H ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( K o. F ) ) = ( H gsum ( k e. A |-> ( 0g ` H ) ) ) ) | 
						
							| 41 | 29 | oveq2d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) | 
						
							| 42 | 9 | gsumz |  |-  ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 43 | 3 5 42 | syl2anc |  |-  ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 45 | 41 44 | eqtrd |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = .0. ) | 
						
							| 46 | 45 | fveq2d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( K ` ( G gsum F ) ) = ( K ` .0. ) ) | 
						
							| 47 | 18 40 46 | 3eqtr4d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) | 
						
							| 48 | 47 | ex |  |-  ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) | 
						
							| 49 | 3 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> G e. Mnd ) | 
						
							| 50 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 51 | 1 50 | mndcl |  |-  ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) | 
						
							| 52 | 51 | 3expb |  |-  ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) e. B ) | 
						
							| 53 | 49 52 | sylan |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) e. B ) | 
						
							| 54 |  | f1of1 |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 55 | 54 | ad2antll |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 56 |  | cnvimass |  |-  ( `' F " ( _V \ { .0. } ) ) C_ dom F | 
						
							| 57 | 7 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> B ) | 
						
							| 58 | 56 57 | fssdm |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) | 
						
							| 59 |  | f1ss |  |-  ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) /\ ( `' F " ( _V \ { .0. } ) ) C_ A ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) | 
						
							| 60 | 55 58 59 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) | 
						
							| 61 |  | f1f |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) | 
						
							| 63 |  | fco |  |-  ( ( F : A --> B /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B ) | 
						
							| 64 | 7 62 63 | syl2an2r |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B ) | 
						
							| 65 | 64 | ffvelcdmda |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( F o. f ) ` x ) e. B ) | 
						
							| 66 |  | simprl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) | 
						
							| 67 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 68 | 66 67 | eleqtrdi |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 69 | 6 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> K e. ( G MndHom H ) ) | 
						
							| 70 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 71 | 1 50 70 | mhmlin |  |-  ( ( K e. ( G MndHom H ) /\ x e. B /\ y e. B ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) | 
						
							| 72 | 71 | 3expb |  |-  ( ( K e. ( G MndHom H ) /\ ( x e. B /\ y e. B ) ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) | 
						
							| 73 | 69 72 | sylan |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. B /\ y e. B ) ) -> ( K ` ( x ( +g ` G ) y ) ) = ( ( K ` x ) ( +g ` H ) ( K ` y ) ) ) | 
						
							| 74 |  | coass |  |-  ( ( K o. F ) o. f ) = ( K o. ( F o. f ) ) | 
						
							| 75 | 74 | fveq1i |  |-  ( ( ( K o. F ) o. f ) ` x ) = ( ( K o. ( F o. f ) ) ` x ) | 
						
							| 76 |  | fvco3 |  |-  ( ( ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> B /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( K o. ( F o. f ) ) ` x ) = ( K ` ( ( F o. f ) ` x ) ) ) | 
						
							| 77 | 64 76 | sylan |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( K o. ( F o. f ) ) ` x ) = ( K ` ( ( F o. f ) ` x ) ) ) | 
						
							| 78 | 75 77 | eqtr2id |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( K ` ( ( F o. f ) ` x ) ) = ( ( ( K o. F ) o. f ) ` x ) ) | 
						
							| 79 | 53 65 68 73 78 | seqhomo |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( ( K o. F ) o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 80 | 5 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> A e. V ) | 
						
							| 81 | 8 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( Z ` ran F ) ) | 
						
							| 82 | 28 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 83 |  | f1ofo |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 84 |  | forn |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 86 | 85 | ad2antll |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 87 | 82 86 | sseqtrrd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) | 
						
							| 88 |  | eqid |  |-  ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) | 
						
							| 89 | 1 9 50 2 49 80 57 81 66 60 87 88 | gsumval3 |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 90 | 89 | fveq2d |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( G gsum F ) ) = ( K ` ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) | 
						
							| 91 |  | eqid |  |-  ( Cntz ` H ) = ( Cntz ` H ) | 
						
							| 92 | 4 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> H e. Mnd ) | 
						
							| 93 |  | fco |  |-  ( ( K : B --> ( Base ` H ) /\ F : A --> B ) -> ( K o. F ) : A --> ( Base ` H ) ) | 
						
							| 94 | 32 57 93 | syl2an2r |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K o. F ) : A --> ( Base ` H ) ) | 
						
							| 95 | 2 91 | cntzmhm2 |  |-  ( ( K e. ( G MndHom H ) /\ ran F C_ ( Z ` ran F ) ) -> ( K " ran F ) C_ ( ( Cntz ` H ) ` ( K " ran F ) ) ) | 
						
							| 96 | 6 81 95 | syl2an2r |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K " ran F ) C_ ( ( Cntz ` H ) ` ( K " ran F ) ) ) | 
						
							| 97 |  | rnco2 |  |-  ran ( K o. F ) = ( K " ran F ) | 
						
							| 98 | 97 | fveq2i |  |-  ( ( Cntz ` H ) ` ran ( K o. F ) ) = ( ( Cntz ` H ) ` ( K " ran F ) ) | 
						
							| 99 | 96 97 98 | 3sstr4g |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran ( K o. F ) C_ ( ( Cntz ` H ) ` ran ( K o. F ) ) ) | 
						
							| 100 |  | eldifi |  |-  ( x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) -> x e. A ) | 
						
							| 101 |  | fvco3 |  |-  ( ( F : A --> B /\ x e. A ) -> ( ( K o. F ) ` x ) = ( K ` ( F ` x ) ) ) | 
						
							| 102 | 57 100 101 | syl2an |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) ` x ) = ( K ` ( F ` x ) ) ) | 
						
							| 103 | 22 | a1i |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> .0. e. _V ) | 
						
							| 104 | 57 82 80 103 | suppssr |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F ` x ) = .0. ) | 
						
							| 105 | 104 | fveq2d |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` ( F ` x ) ) = ( K ` .0. ) ) | 
						
							| 106 | 16 | ad2antrr |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( K ` .0. ) = ( 0g ` H ) ) | 
						
							| 107 | 102 105 106 | 3eqtrd |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( A \ ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) ` x ) = ( 0g ` H ) ) | 
						
							| 108 | 94 107 | suppss |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) supp ( 0g ` H ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 109 | 108 86 | sseqtrrd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( K o. F ) supp ( 0g ` H ) ) C_ ran f ) | 
						
							| 110 |  | eqid |  |-  ( ( ( K o. F ) o. f ) supp ( 0g ` H ) ) = ( ( ( K o. F ) o. f ) supp ( 0g ` H ) ) | 
						
							| 111 | 30 11 70 91 92 80 94 99 66 60 109 110 | gsumval3 |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( H gsum ( K o. F ) ) = ( seq 1 ( ( +g ` H ) , ( ( K o. F ) o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 112 | 79 90 111 | 3eqtr4rd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) | 
						
							| 113 | 112 | expr |  |-  ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) | 
						
							| 114 | 113 | exlimdv |  |-  ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) | 
						
							| 115 | 114 | expimpd |  |-  ( ph -> ( ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) ) | 
						
							| 116 | 10 | fsuppimpd |  |-  ( ph -> ( F supp .0. ) e. Fin ) | 
						
							| 117 | 26 116 | eqeltrrd |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) e. Fin ) | 
						
							| 118 |  | fz1f1o |  |-  ( ( `' F " ( _V \ { .0. } ) ) e. Fin -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 120 | 48 115 119 | mpjaod |  |-  ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |