Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzoppg.b |
|- B = ( Base ` G ) |
2 |
|
gsumzoppg.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsumzoppg.z |
|- Z = ( Cntz ` G ) |
4 |
|
gsumzoppg.o |
|- O = ( oppG ` G ) |
5 |
|
gsumzoppg.g |
|- ( ph -> G e. Mnd ) |
6 |
|
gsumzoppg.a |
|- ( ph -> A e. V ) |
7 |
|
gsumzoppg.f |
|- ( ph -> F : A --> B ) |
8 |
|
gsumzoppg.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
9 |
|
gsumzoppg.n |
|- ( ph -> F finSupp .0. ) |
10 |
4
|
oppgmnd |
|- ( G e. Mnd -> O e. Mnd ) |
11 |
5 10
|
syl |
|- ( ph -> O e. Mnd ) |
12 |
4 2
|
oppgid |
|- .0. = ( 0g ` O ) |
13 |
12
|
gsumz |
|- ( ( O e. Mnd /\ A e. V ) -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) |
14 |
11 6 13
|
syl2anc |
|- ( ph -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) |
15 |
2
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
16 |
5 6 15
|
syl2anc |
|- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
17 |
14 16
|
eqtr4d |
|- ( ph -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
18 |
17
|
adantr |
|- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
19 |
2
|
fvexi |
|- .0. e. _V |
20 |
19
|
a1i |
|- ( ph -> .0. e. _V ) |
21 |
|
ssid |
|- ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) |
22 |
7 6
|
fexd |
|- ( ph -> F e. _V ) |
23 |
|
suppimacnv |
|- ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
24 |
22 19 23
|
sylancl |
|- ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) |
25 |
24
|
sseq1d |
|- ( ph -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
26 |
21 25
|
mpbiri |
|- ( ph -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
27 |
7 6 20 26
|
gsumcllem |
|- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
28 |
27
|
oveq2d |
|- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( O gsum ( k e. A |-> .0. ) ) ) |
29 |
27
|
oveq2d |
|- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
30 |
18 28 29
|
3eqtr4d |
|- ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( G gsum F ) ) |
31 |
30
|
ex |
|- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) -> ( O gsum F ) = ( G gsum F ) ) ) |
32 |
|
simprl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) |
33 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
34 |
32 33
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. ( ZZ>= ` 1 ) ) |
35 |
7
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> B ) |
36 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
37 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
38 |
36 37
|
sylib |
|- ( F : A --> B -> F : A -onto-> ran F ) |
39 |
|
fof |
|- ( F : A -onto-> ran F -> F : A --> ran F ) |
40 |
35 38 39
|
3syl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ran F ) |
41 |
5
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> G e. Mnd ) |
42 |
1
|
submacs |
|- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
43 |
|
acsmre |
|- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
44 |
41 42 43
|
3syl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
45 |
|
eqid |
|- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
46 |
35
|
frnd |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ B ) |
47 |
44 45 46
|
mrcssidd |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
48 |
40 47
|
fssd |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
49 |
|
f1of1 |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
50 |
49
|
ad2antll |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) |
51 |
|
cnvimass |
|- ( `' F " ( _V \ { .0. } ) ) C_ dom F |
52 |
51 35
|
fssdm |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
53 |
|
f1ss |
|- ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) /\ ( `' F " ( _V \ { .0. } ) ) C_ A ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
54 |
50 52 53
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
55 |
|
f1f |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
56 |
54 55
|
syl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) |
57 |
|
fco |
|- ( ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
58 |
48 56 57
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
59 |
58
|
ffvelrnda |
|- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( F o. f ) ` x ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
60 |
45
|
mrccl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ ran F C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
61 |
44 46 60
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
62 |
4
|
oppgsubm |
|- ( SubMnd ` G ) = ( SubMnd ` O ) |
63 |
61 62
|
eleqtrdi |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) ) |
64 |
|
eqid |
|- ( +g ` O ) = ( +g ` O ) |
65 |
64
|
submcl |
|- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
66 |
65
|
3expb |
|- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
67 |
63 66
|
sylan |
|- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
68 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
69 |
68 4 64
|
oppgplus |
|- ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) |
70 |
8
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( Z ` ran F ) ) |
71 |
|
eqid |
|- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
72 |
3 45 71
|
cntzspan |
|- ( ( G e. Mnd /\ ran F C_ ( Z ` ran F ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
73 |
41 70 72
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
74 |
71 3
|
submcmn2 |
|- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
75 |
61 74
|
syl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
76 |
73 75
|
mpbid |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
77 |
76
|
sselda |
|- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
78 |
68 3
|
cntzi |
|- ( ( x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
79 |
77 78
|
sylan |
|- ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) |
80 |
69 79
|
eqtr4id |
|- ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) |
81 |
80
|
anasss |
|- ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) |
82 |
34 59 67 81
|
seqfeq4 |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
83 |
4 1
|
oppgbas |
|- B = ( Base ` O ) |
84 |
|
eqid |
|- ( Cntz ` O ) = ( Cntz ` O ) |
85 |
41 10
|
syl |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> O e. Mnd ) |
86 |
6
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> A e. V ) |
87 |
4 3
|
oppgcntz |
|- ( Z ` ran F ) = ( ( Cntz ` O ) ` ran F ) |
88 |
70 87
|
sseqtrdi |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( Cntz ` O ) ` ran F ) ) |
89 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
90 |
24 89
|
eqsstrrdi |
|- ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ dom F ) |
91 |
7 90
|
fssdmd |
|- ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
92 |
91
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) |
93 |
50 92 53
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) |
94 |
25
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
95 |
21 94
|
mpbiri |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
96 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) ) |
97 |
|
forn |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
98 |
96 97
|
syl |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) |
99 |
98
|
sseq2d |
|- ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
100 |
99
|
ad2antll |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) |
101 |
95 100
|
mpbird |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) |
102 |
|
eqid |
|- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
103 |
83 12 64 84 85 86 35 88 32 93 101 102
|
gsumval3 |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
104 |
26
|
adantr |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) |
105 |
104 100
|
mpbird |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) |
106 |
1 2 68 3 41 86 35 70 32 93 105 102
|
gsumval3 |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
107 |
82 103 106
|
3eqtr4d |
|- ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( G gsum F ) ) |
108 |
107
|
expr |
|- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
109 |
108
|
exlimdv |
|- ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
110 |
109
|
expimpd |
|- ( ph -> ( ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) -> ( O gsum F ) = ( G gsum F ) ) ) |
111 |
9
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
112 |
24 111
|
eqeltrrd |
|- ( ph -> ( `' F " ( _V \ { .0. } ) ) e. Fin ) |
113 |
|
fz1f1o |
|- ( ( `' F " ( _V \ { .0. } ) ) e. Fin -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
114 |
112 113
|
syl |
|- ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) |
115 |
31 110 114
|
mpjaod |
|- ( ph -> ( O gsum F ) = ( G gsum F ) ) |