| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzoppg.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumzoppg.0 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsumzoppg.z |  |-  Z = ( Cntz ` G ) | 
						
							| 4 |  | gsumzoppg.o |  |-  O = ( oppG ` G ) | 
						
							| 5 |  | gsumzoppg.g |  |-  ( ph -> G e. Mnd ) | 
						
							| 6 |  | gsumzoppg.a |  |-  ( ph -> A e. V ) | 
						
							| 7 |  | gsumzoppg.f |  |-  ( ph -> F : A --> B ) | 
						
							| 8 |  | gsumzoppg.c |  |-  ( ph -> ran F C_ ( Z ` ran F ) ) | 
						
							| 9 |  | gsumzoppg.n |  |-  ( ph -> F finSupp .0. ) | 
						
							| 10 | 4 | oppgmnd |  |-  ( G e. Mnd -> O e. Mnd ) | 
						
							| 11 | 5 10 | syl |  |-  ( ph -> O e. Mnd ) | 
						
							| 12 | 4 2 | oppgid |  |-  .0. = ( 0g ` O ) | 
						
							| 13 | 12 | gsumz |  |-  ( ( O e. Mnd /\ A e. V ) -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 14 | 11 6 13 | syl2anc |  |-  ( ph -> ( O gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 15 | 2 | gsumz |  |-  ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 16 | 5 6 15 | syl2anc |  |-  ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) | 
						
							| 17 | 14 16 | eqtr4d |  |-  ( ph -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum ( k e. A |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) | 
						
							| 19 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 21 |  | ssid |  |-  ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) | 
						
							| 22 | 7 6 | fexd |  |-  ( ph -> F e. _V ) | 
						
							| 23 |  | suppimacnv |  |-  ( ( F e. _V /\ .0. e. _V ) -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 24 | 22 19 23 | sylancl |  |-  ( ph -> ( F supp .0. ) = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 25 | 24 | sseq1d |  |-  ( ph -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) | 
						
							| 26 | 21 25 | mpbiri |  |-  ( ph -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 27 | 7 6 20 26 | gsumcllem |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> F = ( k e. A |-> .0. ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( O gsum ( k e. A |-> .0. ) ) ) | 
						
							| 29 | 27 | oveq2d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) | 
						
							| 30 | 18 28 29 | 3eqtr4d |  |-  ( ( ph /\ ( `' F " ( _V \ { .0. } ) ) = (/) ) -> ( O gsum F ) = ( G gsum F ) ) | 
						
							| 31 | 30 | ex |  |-  ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) -> ( O gsum F ) = ( G gsum F ) ) ) | 
						
							| 32 |  | simprl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) | 
						
							| 33 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 34 | 32 33 | eleqtrdi |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. ( ZZ>= ` 1 ) ) | 
						
							| 35 | 7 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> B ) | 
						
							| 36 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 37 |  | dffn4 |  |-  ( F Fn A <-> F : A -onto-> ran F ) | 
						
							| 38 | 36 37 | sylib |  |-  ( F : A --> B -> F : A -onto-> ran F ) | 
						
							| 39 |  | fof |  |-  ( F : A -onto-> ran F -> F : A --> ran F ) | 
						
							| 40 | 35 38 39 | 3syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ran F ) | 
						
							| 41 | 5 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> G e. Mnd ) | 
						
							| 42 | 1 | submacs |  |-  ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) | 
						
							| 43 |  | acsmre |  |-  ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) | 
						
							| 44 | 41 42 43 | 3syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) | 
						
							| 45 |  | eqid |  |-  ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) | 
						
							| 46 | 35 | frnd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ B ) | 
						
							| 47 | 44 45 46 | mrcssidd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 48 | 40 47 | fssd |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 49 |  | f1of1 |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 50 | 49 | ad2antll |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 51 |  | cnvimass |  |-  ( `' F " ( _V \ { .0. } ) ) C_ dom F | 
						
							| 52 | 51 35 | fssdm |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) | 
						
							| 53 |  | f1ss |  |-  ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> ( `' F " ( _V \ { .0. } ) ) /\ ( `' F " ( _V \ { .0. } ) ) C_ A ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) | 
						
							| 54 | 50 52 53 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) | 
						
							| 55 |  | f1f |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) | 
						
							| 57 |  | fco |  |-  ( ( F : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 58 | 48 56 57 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F o. f ) : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 59 | 58 | ffvelcdmda |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) -> ( ( F o. f ) ` x ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 60 | 45 | mrccl |  |-  ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ ran F C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) | 
						
							| 61 | 44 46 60 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) | 
						
							| 62 | 4 | oppgsubm |  |-  ( SubMnd ` G ) = ( SubMnd ` O ) | 
						
							| 63 | 61 62 | eleqtrdi |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) ) | 
						
							| 64 |  | eqid |  |-  ( +g ` O ) = ( +g ` O ) | 
						
							| 65 | 64 | submcl |  |-  ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 66 | 65 | 3expb |  |-  ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` O ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 67 | 63 66 | sylan |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 68 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 69 | 68 4 64 | oppgplus |  |-  ( x ( +g ` O ) y ) = ( y ( +g ` G ) x ) | 
						
							| 70 | 8 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( Z ` ran F ) ) | 
						
							| 71 |  | eqid |  |-  ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) | 
						
							| 72 | 3 45 71 | cntzspan |  |-  ( ( G e. Mnd /\ ran F C_ ( Z ` ran F ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) | 
						
							| 73 | 41 70 72 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) | 
						
							| 74 | 71 3 | submcmn2 |  |-  ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) | 
						
							| 75 | 61 74 | syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) | 
						
							| 76 | 73 75 | mpbid |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) | 
						
							| 77 | 76 | sselda |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) | 
						
							| 78 | 68 3 | cntzi |  |-  ( ( x e. ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 79 | 77 78 | sylan |  |-  ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` G ) y ) = ( y ( +g ` G ) x ) ) | 
						
							| 80 | 69 79 | eqtr4id |  |-  ( ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) | 
						
							| 81 | 80 | anasss |  |-  ( ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) /\ ( x e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) /\ y e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) -> ( x ( +g ` O ) y ) = ( x ( +g ` G ) y ) ) | 
						
							| 82 | 34 59 67 81 | seqfeq4 |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 83 | 4 1 | oppgbas |  |-  B = ( Base ` O ) | 
						
							| 84 |  | eqid |  |-  ( Cntz ` O ) = ( Cntz ` O ) | 
						
							| 85 | 41 10 | syl |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> O e. Mnd ) | 
						
							| 86 | 6 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> A e. V ) | 
						
							| 87 | 4 3 | oppgcntz |  |-  ( Z ` ran F ) = ( ( Cntz ` O ) ` ran F ) | 
						
							| 88 | 70 87 | sseqtrdi |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ran F C_ ( ( Cntz ` O ) ` ran F ) ) | 
						
							| 89 |  | suppssdm |  |-  ( F supp .0. ) C_ dom F | 
						
							| 90 | 24 89 | eqsstrrdi |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ dom F ) | 
						
							| 91 | 7 90 | fssdmd |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) C_ A ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( `' F " ( _V \ { .0. } ) ) C_ A ) | 
						
							| 93 | 50 92 53 | syl2anc |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-> A ) | 
						
							| 94 | 25 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) <-> ( `' F " ( _V \ { .0. } ) ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) | 
						
							| 95 | 21 94 | mpbiri |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 96 |  | f1ofo |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 97 |  | forn |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 98 | 96 97 | syl |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ran f = ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 99 | 98 | sseq2d |  |-  ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) | 
						
							| 100 | 99 | ad2antll |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) ) | 
						
							| 101 | 95 100 | mpbird |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) | 
						
							| 102 |  | eqid |  |-  ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) | 
						
							| 103 | 83 12 64 84 85 86 35 88 32 93 101 102 | gsumval3 |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( seq 1 ( ( +g ` O ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 104 | 26 | adantr |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ( `' F " ( _V \ { .0. } ) ) ) | 
						
							| 105 | 104 100 | mpbird |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( F supp .0. ) C_ ran f ) | 
						
							| 106 | 1 2 68 3 41 86 35 70 32 93 105 102 | gsumval3 |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 107 | 82 103 106 | 3eqtr4d |  |-  ( ( ph /\ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) -> ( O gsum F ) = ( G gsum F ) ) | 
						
							| 108 | 107 | expr |  |-  ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) | 
						
							| 109 | 108 | exlimdv |  |-  ( ( ph /\ ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) -> ( O gsum F ) = ( G gsum F ) ) ) | 
						
							| 110 | 109 | expimpd |  |-  ( ph -> ( ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) -> ( O gsum F ) = ( G gsum F ) ) ) | 
						
							| 111 | 9 | fsuppimpd |  |-  ( ph -> ( F supp .0. ) e. Fin ) | 
						
							| 112 | 24 111 | eqeltrrd |  |-  ( ph -> ( `' F " ( _V \ { .0. } ) ) e. Fin ) | 
						
							| 113 |  | fz1f1o |  |-  ( ( `' F " ( _V \ { .0. } ) ) e. Fin -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 114 | 112 113 | syl |  |-  ( ph -> ( ( `' F " ( _V \ { .0. } ) ) = (/) \/ ( ( # ` ( `' F " ( _V \ { .0. } ) ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) ) ) ) | 
						
							| 115 | 31 110 114 | mpjaod |  |-  ( ph -> ( O gsum F ) = ( G gsum F ) ) |