| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzcl.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumzcl.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumzcl.z |
|- Z = ( Cntz ` G ) |
| 4 |
|
gsumzcl.g |
|- ( ph -> G e. Mnd ) |
| 5 |
|
gsumzcl.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsumzcl.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
gsumzcl.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 8 |
|
gsumzres.s |
|- ( ph -> ( F supp .0. ) C_ W ) |
| 9 |
|
gsumzres.w |
|- ( ph -> F finSupp .0. ) |
| 10 |
|
inex1g |
|- ( A e. V -> ( A i^i W ) e. _V ) |
| 11 |
5 10
|
syl |
|- ( ph -> ( A i^i W ) e. _V ) |
| 12 |
2
|
gsumz |
|- ( ( G e. Mnd /\ ( A i^i W ) e. _V ) -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = .0. ) |
| 13 |
4 11 12
|
syl2anc |
|- ( ph -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = .0. ) |
| 14 |
2
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 15 |
4 5 14
|
syl2anc |
|- ( ph -> ( G gsum ( k e. A |-> .0. ) ) = .0. ) |
| 16 |
13 15
|
eqtr4d |
|- ( ph -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 18 |
|
resres |
|- ( ( F |` A ) |` W ) = ( F |` ( A i^i W ) ) |
| 19 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 20 |
|
fnresdm |
|- ( F Fn A -> ( F |` A ) = F ) |
| 21 |
6 19 20
|
3syl |
|- ( ph -> ( F |` A ) = F ) |
| 22 |
21
|
reseq1d |
|- ( ph -> ( ( F |` A ) |` W ) = ( F |` W ) ) |
| 23 |
18 22
|
eqtr3id |
|- ( ph -> ( F |` ( A i^i W ) ) = ( F |` W ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( F |` W ) ) |
| 25 |
2
|
fvexi |
|- .0. e. _V |
| 26 |
25
|
a1i |
|- ( ph -> .0. e. _V ) |
| 27 |
|
ssid |
|- ( F supp .0. ) C_ ( F supp .0. ) |
| 28 |
27
|
a1i |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
| 29 |
6 5 26 28
|
gsumcllem |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> F = ( k e. A |-> .0. ) ) |
| 30 |
29
|
reseq1d |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( ( k e. A |-> .0. ) |` ( A i^i W ) ) ) |
| 31 |
|
inss1 |
|- ( A i^i W ) C_ A |
| 32 |
|
resmpt |
|- ( ( A i^i W ) C_ A -> ( ( k e. A |-> .0. ) |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) ) |
| 33 |
31 32
|
ax-mp |
|- ( ( k e. A |-> .0. ) |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) |
| 34 |
30 33
|
eqtrdi |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` ( A i^i W ) ) = ( k e. ( A i^i W ) |-> .0. ) ) |
| 35 |
24 34
|
eqtr3d |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( F |` W ) = ( k e. ( A i^i W ) |-> .0. ) ) |
| 36 |
35
|
oveq2d |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( F |` W ) ) = ( G gsum ( k e. ( A i^i W ) |-> .0. ) ) ) |
| 37 |
29
|
oveq2d |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum F ) = ( G gsum ( k e. A |-> .0. ) ) ) |
| 38 |
17 36 37
|
3eqtr4d |
|- ( ( ph /\ ( F supp .0. ) = (/) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |
| 39 |
38
|
ex |
|- ( ph -> ( ( F supp .0. ) = (/) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 40 |
|
f1ofo |
|- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) ) |
| 41 |
|
forn |
|- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
| 42 |
40 41
|
syl |
|- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ran f = ( F supp .0. ) ) |
| 43 |
42
|
ad2antll |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f = ( F supp .0. ) ) |
| 44 |
8
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ W ) |
| 45 |
43 44
|
eqsstrd |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran f C_ W ) |
| 46 |
|
cores |
|- ( ran f C_ W -> ( ( F |` W ) o. f ) = ( F o. f ) ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( F |` W ) o. f ) = ( F o. f ) ) |
| 48 |
47
|
seqeq3d |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) = seq 1 ( ( +g ` G ) , ( F o. f ) ) ) |
| 49 |
48
|
fveq1d |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 50 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 51 |
4
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> G e. Mnd ) |
| 52 |
11
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( A i^i W ) e. _V ) |
| 53 |
6
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> F : A --> B ) |
| 54 |
|
fssres |
|- ( ( F : A --> B /\ ( A i^i W ) C_ A ) -> ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) |
| 55 |
53 31 54
|
sylancl |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) |
| 56 |
23
|
feq1d |
|- ( ph -> ( ( F |` ( A i^i W ) ) : ( A i^i W ) --> B <-> ( F |` W ) : ( A i^i W ) --> B ) ) |
| 57 |
56
|
biimpa |
|- ( ( ph /\ ( F |` ( A i^i W ) ) : ( A i^i W ) --> B ) -> ( F |` W ) : ( A i^i W ) --> B ) |
| 58 |
55 57
|
syldan |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F |` W ) : ( A i^i W ) --> B ) |
| 59 |
|
resss |
|- ( F |` W ) C_ F |
| 60 |
59
|
rnssi |
|- ran ( F |` W ) C_ ran F |
| 61 |
3
|
cntzidss |
|- ( ( ran F C_ ( Z ` ran F ) /\ ran ( F |` W ) C_ ran F ) -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 62 |
7 60 61
|
sylancl |
|- ( ph -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran ( F |` W ) C_ ( Z ` ran ( F |` W ) ) ) |
| 64 |
|
simprl |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( # ` ( F supp .0. ) ) e. NN ) |
| 65 |
|
f1of1 |
|- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
| 66 |
65
|
ad2antll |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) ) |
| 67 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
| 68 |
67 6
|
fssdm |
|- ( ph -> ( F supp .0. ) C_ A ) |
| 69 |
68 8
|
ssind |
|- ( ph -> ( F supp .0. ) C_ ( A i^i W ) ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ( A i^i W ) ) |
| 71 |
|
f1ss |
|- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ ( A i^i W ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( A i^i W ) ) |
| 72 |
66 70 71
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( A i^i W ) ) |
| 73 |
6 5
|
fexd |
|- ( ph -> F e. _V ) |
| 74 |
|
ressuppss |
|- ( ( F e. _V /\ .0. e. _V ) -> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) |
| 75 |
73 25 74
|
sylancl |
|- ( ph -> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) |
| 76 |
|
sseq2 |
|- ( ran f = ( F supp .0. ) -> ( ( ( F |` W ) supp .0. ) C_ ran f <-> ( ( F |` W ) supp .0. ) C_ ( F supp .0. ) ) ) |
| 77 |
75 76
|
imbitrrid |
|- ( ran f = ( F supp .0. ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 78 |
40 41 77
|
3syl |
|- ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 79 |
78
|
adantl |
|- ( ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( ph -> ( ( F |` W ) supp .0. ) C_ ran f ) ) |
| 80 |
79
|
impcom |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( ( F |` W ) supp .0. ) C_ ran f ) |
| 81 |
|
eqid |
|- ( ( ( F |` W ) o. f ) supp .0. ) = ( ( ( F |` W ) o. f ) supp .0. ) |
| 82 |
1 2 50 3 51 52 58 63 64 72 80 81
|
gsumval3 |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum ( F |` W ) ) = ( seq 1 ( ( +g ` G ) , ( ( F |` W ) o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 83 |
5
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> A e. V ) |
| 84 |
7
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 85 |
68
|
adantr |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ A ) |
| 86 |
|
f1ss |
|- ( ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> ( F supp .0. ) /\ ( F supp .0. ) C_ A ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
| 87 |
66 85 86
|
syl2anc |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-> A ) |
| 88 |
27 43
|
sseqtrrid |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( F supp .0. ) C_ ran f ) |
| 89 |
|
eqid |
|- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
| 90 |
1 2 50 3 51 83 53 84 64 87 88 89
|
gsumval3 |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , ( F o. f ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 91 |
49 82 90
|
3eqtr4d |
|- ( ( ph /\ ( ( # ` ( F supp .0. ) ) e. NN /\ f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |
| 92 |
91
|
expr |
|- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 93 |
92
|
exlimdv |
|- ( ( ph /\ ( # ` ( F supp .0. ) ) e. NN ) -> ( E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 94 |
93
|
expimpd |
|- ( ph -> ( ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) ) |
| 95 |
|
fsuppimp |
|- ( F finSupp .0. -> ( Fun F /\ ( F supp .0. ) e. Fin ) ) |
| 96 |
95
|
simprd |
|- ( F finSupp .0. -> ( F supp .0. ) e. Fin ) |
| 97 |
|
fz1f1o |
|- ( ( F supp .0. ) e. Fin -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
| 98 |
9 96 97
|
3syl |
|- ( ph -> ( ( F supp .0. ) = (/) \/ ( ( # ` ( F supp .0. ) ) e. NN /\ E. f f : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) ) |
| 99 |
39 94 98
|
mpjaod |
|- ( ph -> ( G gsum ( F |` W ) ) = ( G gsum F ) ) |