Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzsplit.b |
|- B = ( Base ` G ) |
2 |
|
gsumzsplit.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsumzsplit.p |
|- .+ = ( +g ` G ) |
4 |
|
gsumzsplit.z |
|- Z = ( Cntz ` G ) |
5 |
|
gsumzsplit.g |
|- ( ph -> G e. Mnd ) |
6 |
|
gsumzsplit.a |
|- ( ph -> A e. V ) |
7 |
|
gsumzsplit.f |
|- ( ph -> F : A --> B ) |
8 |
|
gsumzsplit.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
9 |
|
gsumzsplit.w |
|- ( ph -> F finSupp .0. ) |
10 |
|
gsumzsplit.i |
|- ( ph -> ( C i^i D ) = (/) ) |
11 |
|
gsumzsplit.u |
|- ( ph -> A = ( C u. D ) ) |
12 |
2
|
fvexi |
|- .0. e. _V |
13 |
12
|
a1i |
|- ( ph -> .0. e. _V ) |
14 |
7 6 13 9
|
fsuppmptif |
|- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) finSupp .0. ) |
15 |
7 6 13 9
|
fsuppmptif |
|- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) finSupp .0. ) |
16 |
1
|
submacs |
|- ( G e. Mnd -> ( SubMnd ` G ) e. ( ACS ` B ) ) |
17 |
|
acsmre |
|- ( ( SubMnd ` G ) e. ( ACS ` B ) -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
18 |
5 16 17
|
3syl |
|- ( ph -> ( SubMnd ` G ) e. ( Moore ` B ) ) |
19 |
7
|
frnd |
|- ( ph -> ran F C_ B ) |
20 |
|
eqid |
|- ( mrCls ` ( SubMnd ` G ) ) = ( mrCls ` ( SubMnd ` G ) ) |
21 |
20
|
mrccl |
|- ( ( ( SubMnd ` G ) e. ( Moore ` B ) /\ ran F C_ B ) -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
22 |
18 19 21
|
syl2anc |
|- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) ) |
23 |
|
eqid |
|- ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) = ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
24 |
4 20 23
|
cntzspan |
|- ( ( G e. Mnd /\ ran F C_ ( Z ` ran F ) ) -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
25 |
5 8 24
|
syl2anc |
|- ( ph -> ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd ) |
26 |
23 4
|
submcmn2 |
|- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
27 |
22 26
|
syl |
|- ( ph -> ( ( G |`s ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) e. CMnd <-> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) ) |
28 |
25 27
|
mpbid |
|- ( ph -> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) ) |
29 |
18 20 19
|
mrcssidd |
|- ( ph -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ k e. A ) -> ran F C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
31 |
7
|
ffnd |
|- ( ph -> F Fn A ) |
32 |
|
fnfvelrn |
|- ( ( F Fn A /\ k e. A ) -> ( F ` k ) e. ran F ) |
33 |
31 32
|
sylan |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. ran F ) |
34 |
30 33
|
sseldd |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
35 |
2
|
subm0cl |
|- ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) e. ( SubMnd ` G ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
36 |
22 35
|
syl |
|- ( ph -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
37 |
36
|
adantr |
|- ( ( ph /\ k e. A ) -> .0. e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
38 |
34 37
|
ifcld |
|- ( ( ph /\ k e. A ) -> if ( k e. C , ( F ` k ) , .0. ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
39 |
38
|
fmpttd |
|- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
40 |
34 37
|
ifcld |
|- ( ( ph /\ k e. A ) -> if ( k e. D , ( F ` k ) , .0. ) e. ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
41 |
40
|
fmpttd |
|- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) : A --> ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
42 |
1 2 3 4 5 6 14 15 22 28 39 41
|
gsumzadd |
|- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) = ( ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) .+ ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
43 |
7
|
feqmptd |
|- ( ph -> F = ( k e. A |-> ( F ` k ) ) ) |
44 |
|
iftrue |
|- ( k e. C -> if ( k e. C , ( F ` k ) , .0. ) = ( F ` k ) ) |
45 |
44
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> if ( k e. C , ( F ` k ) , .0. ) = ( F ` k ) ) |
46 |
|
noel |
|- -. k e. (/) |
47 |
|
eleq2 |
|- ( ( C i^i D ) = (/) -> ( k e. ( C i^i D ) <-> k e. (/) ) ) |
48 |
46 47
|
mtbiri |
|- ( ( C i^i D ) = (/) -> -. k e. ( C i^i D ) ) |
49 |
10 48
|
syl |
|- ( ph -> -. k e. ( C i^i D ) ) |
50 |
49
|
adantr |
|- ( ( ph /\ k e. A ) -> -. k e. ( C i^i D ) ) |
51 |
|
elin |
|- ( k e. ( C i^i D ) <-> ( k e. C /\ k e. D ) ) |
52 |
50 51
|
sylnib |
|- ( ( ph /\ k e. A ) -> -. ( k e. C /\ k e. D ) ) |
53 |
|
imnan |
|- ( ( k e. C -> -. k e. D ) <-> -. ( k e. C /\ k e. D ) ) |
54 |
52 53
|
sylibr |
|- ( ( ph /\ k e. A ) -> ( k e. C -> -. k e. D ) ) |
55 |
54
|
imp |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> -. k e. D ) |
56 |
55
|
iffalsed |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> if ( k e. D , ( F ` k ) , .0. ) = .0. ) |
57 |
45 56
|
oveq12d |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( ( F ` k ) .+ .0. ) ) |
58 |
7
|
ffvelrnda |
|- ( ( ph /\ k e. A ) -> ( F ` k ) e. B ) |
59 |
1 3 2
|
mndrid |
|- ( ( G e. Mnd /\ ( F ` k ) e. B ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
60 |
5 58 59
|
syl2an2r |
|- ( ( ph /\ k e. A ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( ( F ` k ) .+ .0. ) = ( F ` k ) ) |
62 |
57 61
|
eqtrd |
|- ( ( ( ph /\ k e. A ) /\ k e. C ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
63 |
54
|
con2d |
|- ( ( ph /\ k e. A ) -> ( k e. D -> -. k e. C ) ) |
64 |
63
|
imp |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> -. k e. C ) |
65 |
64
|
iffalsed |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> if ( k e. C , ( F ` k ) , .0. ) = .0. ) |
66 |
|
iftrue |
|- ( k e. D -> if ( k e. D , ( F ` k ) , .0. ) = ( F ` k ) ) |
67 |
66
|
adantl |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> if ( k e. D , ( F ` k ) , .0. ) = ( F ` k ) ) |
68 |
65 67
|
oveq12d |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( .0. .+ ( F ` k ) ) ) |
69 |
1 3 2
|
mndlid |
|- ( ( G e. Mnd /\ ( F ` k ) e. B ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
70 |
5 58 69
|
syl2an2r |
|- ( ( ph /\ k e. A ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( .0. .+ ( F ` k ) ) = ( F ` k ) ) |
72 |
68 71
|
eqtrd |
|- ( ( ( ph /\ k e. A ) /\ k e. D ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
73 |
11
|
eleq2d |
|- ( ph -> ( k e. A <-> k e. ( C u. D ) ) ) |
74 |
|
elun |
|- ( k e. ( C u. D ) <-> ( k e. C \/ k e. D ) ) |
75 |
73 74
|
bitrdi |
|- ( ph -> ( k e. A <-> ( k e. C \/ k e. D ) ) ) |
76 |
75
|
biimpa |
|- ( ( ph /\ k e. A ) -> ( k e. C \/ k e. D ) ) |
77 |
62 72 76
|
mpjaodan |
|- ( ( ph /\ k e. A ) -> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) = ( F ` k ) ) |
78 |
77
|
mpteq2dva |
|- ( ph -> ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) = ( k e. A |-> ( F ` k ) ) ) |
79 |
43 78
|
eqtr4d |
|- ( ph -> F = ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
80 |
1 2
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
81 |
5 80
|
syl |
|- ( ph -> .0. e. B ) |
82 |
81
|
adantr |
|- ( ( ph /\ k e. A ) -> .0. e. B ) |
83 |
58 82
|
ifcld |
|- ( ( ph /\ k e. A ) -> if ( k e. C , ( F ` k ) , .0. ) e. B ) |
84 |
58 82
|
ifcld |
|- ( ( ph /\ k e. A ) -> if ( k e. D , ( F ` k ) , .0. ) e. B ) |
85 |
|
eqidd |
|- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) = ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) |
86 |
|
eqidd |
|- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) = ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) |
87 |
6 83 84 85 86
|
offval2 |
|- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) = ( k e. A |-> ( if ( k e. C , ( F ` k ) , .0. ) .+ if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
88 |
79 87
|
eqtr4d |
|- ( ph -> F = ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
89 |
88
|
oveq2d |
|- ( ph -> ( G gsum F ) = ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) oF .+ ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
90 |
43
|
reseq1d |
|- ( ph -> ( F |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
91 |
|
ssun1 |
|- C C_ ( C u. D ) |
92 |
91 11
|
sseqtrrid |
|- ( ph -> C C_ A ) |
93 |
44
|
mpteq2ia |
|- ( k e. C |-> if ( k e. C , ( F ` k ) , .0. ) ) = ( k e. C |-> ( F ` k ) ) |
94 |
|
resmpt |
|- ( C C_ A -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( k e. C |-> if ( k e. C , ( F ` k ) , .0. ) ) ) |
95 |
|
resmpt |
|- ( C C_ A -> ( ( k e. A |-> ( F ` k ) ) |` C ) = ( k e. C |-> ( F ` k ) ) ) |
96 |
93 94 95
|
3eqtr4a |
|- ( C C_ A -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
97 |
92 96
|
syl |
|- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) = ( ( k e. A |-> ( F ` k ) ) |` C ) ) |
98 |
90 97
|
eqtr4d |
|- ( ph -> ( F |` C ) = ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) |
99 |
98
|
oveq2d |
|- ( ph -> ( G gsum ( F |` C ) ) = ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) ) |
100 |
83
|
fmpttd |
|- ( ph -> ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) : A --> B ) |
101 |
39
|
frnd |
|- ( ph -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
102 |
4
|
cntzidss |
|- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
103 |
28 101 102
|
syl2anc |
|- ( ph -> ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
104 |
|
eldifn |
|- ( k e. ( A \ C ) -> -. k e. C ) |
105 |
104
|
adantl |
|- ( ( ph /\ k e. ( A \ C ) ) -> -. k e. C ) |
106 |
105
|
iffalsed |
|- ( ( ph /\ k e. ( A \ C ) ) -> if ( k e. C , ( F ` k ) , .0. ) = .0. ) |
107 |
106 6
|
suppss2 |
|- ( ph -> ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) supp .0. ) C_ C ) |
108 |
1 2 4 5 6 100 103 107 14
|
gsumzres |
|- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) |` C ) ) = ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
109 |
99 108
|
eqtrd |
|- ( ph -> ( G gsum ( F |` C ) ) = ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) ) |
110 |
43
|
reseq1d |
|- ( ph -> ( F |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
111 |
|
ssun2 |
|- D C_ ( C u. D ) |
112 |
111 11
|
sseqtrrid |
|- ( ph -> D C_ A ) |
113 |
66
|
mpteq2ia |
|- ( k e. D |-> if ( k e. D , ( F ` k ) , .0. ) ) = ( k e. D |-> ( F ` k ) ) |
114 |
|
resmpt |
|- ( D C_ A -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( k e. D |-> if ( k e. D , ( F ` k ) , .0. ) ) ) |
115 |
|
resmpt |
|- ( D C_ A -> ( ( k e. A |-> ( F ` k ) ) |` D ) = ( k e. D |-> ( F ` k ) ) ) |
116 |
113 114 115
|
3eqtr4a |
|- ( D C_ A -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
117 |
112 116
|
syl |
|- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) = ( ( k e. A |-> ( F ` k ) ) |` D ) ) |
118 |
110 117
|
eqtr4d |
|- ( ph -> ( F |` D ) = ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) |
119 |
118
|
oveq2d |
|- ( ph -> ( G gsum ( F |` D ) ) = ( G gsum ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) ) |
120 |
84
|
fmpttd |
|- ( ph -> ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) : A --> B ) |
121 |
41
|
frnd |
|- ( ph -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) |
122 |
4
|
cntzidss |
|- ( ( ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) C_ ( Z ` ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) /\ ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( ( mrCls ` ( SubMnd ` G ) ) ` ran F ) ) -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
123 |
28 121 122
|
syl2anc |
|- ( ph -> ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) C_ ( Z ` ran ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
124 |
|
eldifn |
|- ( k e. ( A \ D ) -> -. k e. D ) |
125 |
124
|
adantl |
|- ( ( ph /\ k e. ( A \ D ) ) -> -. k e. D ) |
126 |
125
|
iffalsed |
|- ( ( ph /\ k e. ( A \ D ) ) -> if ( k e. D , ( F ` k ) , .0. ) = .0. ) |
127 |
126 6
|
suppss2 |
|- ( ph -> ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) supp .0. ) C_ D ) |
128 |
1 2 4 5 6 120 123 127 15
|
gsumzres |
|- ( ph -> ( G gsum ( ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) |` D ) ) = ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
129 |
119 128
|
eqtrd |
|- ( ph -> ( G gsum ( F |` D ) ) = ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) |
130 |
109 129
|
oveq12d |
|- ( ph -> ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) = ( ( G gsum ( k e. A |-> if ( k e. C , ( F ` k ) , .0. ) ) ) .+ ( G gsum ( k e. A |-> if ( k e. D , ( F ` k ) , .0. ) ) ) ) ) |
131 |
42 89 130
|
3eqtr4d |
|- ( ph -> ( G gsum F ) = ( ( G gsum ( F |` C ) ) .+ ( G gsum ( F |` D ) ) ) ) |