Metamath Proof Explorer


Theorem gsumzsubmcl

Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumzsubmcl.0
|- .0. = ( 0g ` G )
gsumzsubmcl.z
|- Z = ( Cntz ` G )
gsumzsubmcl.g
|- ( ph -> G e. Mnd )
gsumzsubmcl.a
|- ( ph -> A e. V )
gsumzsubmcl.s
|- ( ph -> S e. ( SubMnd ` G ) )
gsumzsubmcl.f
|- ( ph -> F : A --> S )
gsumzsubmcl.c
|- ( ph -> ran F C_ ( Z ` ran F ) )
gsumzsubmcl.w
|- ( ph -> F finSupp .0. )
Assertion gsumzsubmcl
|- ( ph -> ( G gsum F ) e. S )

Proof

Step Hyp Ref Expression
1 gsumzsubmcl.0
 |-  .0. = ( 0g ` G )
2 gsumzsubmcl.z
 |-  Z = ( Cntz ` G )
3 gsumzsubmcl.g
 |-  ( ph -> G e. Mnd )
4 gsumzsubmcl.a
 |-  ( ph -> A e. V )
5 gsumzsubmcl.s
 |-  ( ph -> S e. ( SubMnd ` G ) )
6 gsumzsubmcl.f
 |-  ( ph -> F : A --> S )
7 gsumzsubmcl.c
 |-  ( ph -> ran F C_ ( Z ` ran F ) )
8 gsumzsubmcl.w
 |-  ( ph -> F finSupp .0. )
9 eqid
 |-  ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) )
10 eqid
 |-  ( 0g ` ( G |`s S ) ) = ( 0g ` ( G |`s S ) )
11 eqid
 |-  ( Cntz ` ( G |`s S ) ) = ( Cntz ` ( G |`s S ) )
12 eqid
 |-  ( G |`s S ) = ( G |`s S )
13 12 submmnd
 |-  ( S e. ( SubMnd ` G ) -> ( G |`s S ) e. Mnd )
14 5 13 syl
 |-  ( ph -> ( G |`s S ) e. Mnd )
15 12 submbas
 |-  ( S e. ( SubMnd ` G ) -> S = ( Base ` ( G |`s S ) ) )
16 5 15 syl
 |-  ( ph -> S = ( Base ` ( G |`s S ) ) )
17 16 feq3d
 |-  ( ph -> ( F : A --> S <-> F : A --> ( Base ` ( G |`s S ) ) ) )
18 6 17 mpbid
 |-  ( ph -> F : A --> ( Base ` ( G |`s S ) ) )
19 6 frnd
 |-  ( ph -> ran F C_ S )
20 7 19 ssind
 |-  ( ph -> ran F C_ ( ( Z ` ran F ) i^i S ) )
21 12 2 11 resscntz
 |-  ( ( S e. ( SubMnd ` G ) /\ ran F C_ S ) -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) )
22 5 19 21 syl2anc
 |-  ( ph -> ( ( Cntz ` ( G |`s S ) ) ` ran F ) = ( ( Z ` ran F ) i^i S ) )
23 20 22 sseqtrrd
 |-  ( ph -> ran F C_ ( ( Cntz ` ( G |`s S ) ) ` ran F ) )
24 12 1 subm0
 |-  ( S e. ( SubMnd ` G ) -> .0. = ( 0g ` ( G |`s S ) ) )
25 5 24 syl
 |-  ( ph -> .0. = ( 0g ` ( G |`s S ) ) )
26 8 25 breqtrd
 |-  ( ph -> F finSupp ( 0g ` ( G |`s S ) ) )
27 9 10 11 14 4 18 23 26 gsumzcl
 |-  ( ph -> ( ( G |`s S ) gsum F ) e. ( Base ` ( G |`s S ) ) )
28 4 5 6 12 gsumsubm
 |-  ( ph -> ( G gsum F ) = ( ( G |`s S ) gsum F ) )
29 27 28 16 3eltr4d
 |-  ( ph -> ( G gsum F ) e. S )