Description: Simple relationship between <_ and >_ . (Contributed by David A. Wheeler, 10-May-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | gte-lte | |- ( ( A e. _V /\ B e. _V ) -> ( A >_ B <-> B <_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gte | |- >_ = `' <_ |
|
2 | 1 | breqi | |- ( A >_ B <-> A `' <_ B ) |
3 | brcnvg | |- ( ( A e. _V /\ B e. _V ) -> ( A `' <_ B <-> B <_ A ) ) |
|
4 | 2 3 | syl5bb | |- ( ( A e. _V /\ B e. _V ) -> ( A >_ B <-> B <_ A ) ) |