Metamath Proof Explorer


Theorem gte-lteh

Description: Relationship between <_ and >_ using hypotheses. (Contributed by David A. Wheeler, 10-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses gte-lteh.1
|- A e. _V
gte-lteh.2
|- B e. _V
Assertion gte-lteh
|- ( A >_ B <-> B <_ A )

Proof

Step Hyp Ref Expression
1 gte-lteh.1
 |-  A e. _V
2 gte-lteh.2
 |-  B e. _V
3 df-gte
 |-  >_ = `' <_
4 3 breqi
 |-  ( A >_ B <-> A `' <_ B )
5 1 2 brcnv
 |-  ( A `' <_ B <-> B <_ A )
6 4 5 bitri
 |-  ( A >_ B <-> B <_ A )