Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ( A X. A ) \ < ) = ( ( A X. A ) \ < ) |
2 |
|
eqid |
|- ( ( B X. B ) \ `' < ) = ( ( B X. B ) \ `' < ) |
3 |
1 2
|
isocnv3 |
|- ( F Isom < , `' < ( A , B ) <-> F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) |
4 |
3
|
a1i |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) |
5 |
|
df-le |
|- <_ = ( ( RR* X. RR* ) \ `' < ) |
6 |
5
|
cnveqi |
|- `' <_ = `' ( ( RR* X. RR* ) \ `' < ) |
7 |
|
cnvdif |
|- `' ( ( RR* X. RR* ) \ `' < ) = ( `' ( RR* X. RR* ) \ `' `' < ) |
8 |
|
cnvxp |
|- `' ( RR* X. RR* ) = ( RR* X. RR* ) |
9 |
|
ltrel |
|- Rel < |
10 |
|
dfrel2 |
|- ( Rel < <-> `' `' < = < ) |
11 |
9 10
|
mpbi |
|- `' `' < = < |
12 |
8 11
|
difeq12i |
|- ( `' ( RR* X. RR* ) \ `' `' < ) = ( ( RR* X. RR* ) \ < ) |
13 |
6 7 12
|
3eqtri |
|- `' <_ = ( ( RR* X. RR* ) \ < ) |
14 |
13
|
ineq1i |
|- ( `' <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) \ < ) i^i ( A X. A ) ) |
15 |
|
indif1 |
|- ( ( ( RR* X. RR* ) \ < ) i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) |
16 |
14 15
|
eqtri |
|- ( `' <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) |
17 |
|
xpss12 |
|- ( ( A C_ RR* /\ A C_ RR* ) -> ( A X. A ) C_ ( RR* X. RR* ) ) |
18 |
17
|
anidms |
|- ( A C_ RR* -> ( A X. A ) C_ ( RR* X. RR* ) ) |
19 |
|
sseqin2 |
|- ( ( A X. A ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) |
20 |
18 19
|
sylib |
|- ( A C_ RR* -> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) |
21 |
20
|
difeq1d |
|- ( A C_ RR* -> ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) = ( ( A X. A ) \ < ) ) |
22 |
16 21
|
eqtr2id |
|- ( A C_ RR* -> ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) ) |
23 |
22
|
adantr |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) ) |
24 |
|
isoeq2 |
|- ( ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) -> ( F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) |
25 |
23 24
|
syl |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) |
26 |
5
|
ineq1i |
|- ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) |
27 |
|
indif1 |
|- ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) |
28 |
26 27
|
eqtri |
|- ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) |
29 |
|
xpss12 |
|- ( ( B C_ RR* /\ B C_ RR* ) -> ( B X. B ) C_ ( RR* X. RR* ) ) |
30 |
29
|
anidms |
|- ( B C_ RR* -> ( B X. B ) C_ ( RR* X. RR* ) ) |
31 |
|
sseqin2 |
|- ( ( B X. B ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) |
32 |
30 31
|
sylib |
|- ( B C_ RR* -> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) |
33 |
32
|
difeq1d |
|- ( B C_ RR* -> ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) = ( ( B X. B ) \ `' < ) ) |
34 |
28 33
|
eqtr2id |
|- ( B C_ RR* -> ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) ) |
35 |
34
|
adantl |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) ) |
36 |
|
isoeq3 |
|- ( ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) -> ( F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
37 |
35 36
|
syl |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
38 |
4 25 37
|
3bitrd |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
39 |
|
isocnv2 |
|- ( F Isom `' <_ , <_ ( A , B ) <-> F Isom `' `' <_ , `' <_ ( A , B ) ) |
40 |
|
isores2 |
|- ( F Isom `' <_ , <_ ( A , B ) <-> F Isom `' <_ , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
41 |
|
isores1 |
|- ( F Isom `' <_ , ( <_ i^i ( B X. B ) ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
42 |
40 41
|
bitri |
|- ( F Isom `' <_ , <_ ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
43 |
|
lerel |
|- Rel <_ |
44 |
|
dfrel2 |
|- ( Rel <_ <-> `' `' <_ = <_ ) |
45 |
43 44
|
mpbi |
|- `' `' <_ = <_ |
46 |
|
isoeq2 |
|- ( `' `' <_ = <_ -> ( F Isom `' `' <_ , `' <_ ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) ) |
47 |
45 46
|
ax-mp |
|- ( F Isom `' `' <_ , `' <_ ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) |
48 |
39 42 47
|
3bitr3ri |
|- ( F Isom <_ , `' <_ ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
49 |
38 48
|
bitr4di |
|- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) ) |