| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( ( A X. A ) \ < ) = ( ( A X. A ) \ < ) | 
						
							| 2 |  | eqid |  |-  ( ( B X. B ) \ `' < ) = ( ( B X. B ) \ `' < ) | 
						
							| 3 | 1 2 | isocnv3 |  |-  ( F Isom < , `' < ( A , B ) <-> F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) | 
						
							| 5 |  | df-le |  |-  <_ = ( ( RR* X. RR* ) \ `' < ) | 
						
							| 6 | 5 | cnveqi |  |-  `' <_ = `' ( ( RR* X. RR* ) \ `' < ) | 
						
							| 7 |  | cnvdif |  |-  `' ( ( RR* X. RR* ) \ `' < ) = ( `' ( RR* X. RR* ) \ `' `' < ) | 
						
							| 8 |  | cnvxp |  |-  `' ( RR* X. RR* ) = ( RR* X. RR* ) | 
						
							| 9 |  | ltrel |  |-  Rel < | 
						
							| 10 |  | dfrel2 |  |-  ( Rel < <-> `' `' < = < ) | 
						
							| 11 | 9 10 | mpbi |  |-  `' `' < = < | 
						
							| 12 | 8 11 | difeq12i |  |-  ( `' ( RR* X. RR* ) \ `' `' < ) = ( ( RR* X. RR* ) \ < ) | 
						
							| 13 | 6 7 12 | 3eqtri |  |-  `' <_ = ( ( RR* X. RR* ) \ < ) | 
						
							| 14 | 13 | ineq1i |  |-  ( `' <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) \ < ) i^i ( A X. A ) ) | 
						
							| 15 |  | indif1 |  |-  ( ( ( RR* X. RR* ) \ < ) i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) | 
						
							| 16 | 14 15 | eqtri |  |-  ( `' <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) | 
						
							| 17 |  | xpss12 |  |-  ( ( A C_ RR* /\ A C_ RR* ) -> ( A X. A ) C_ ( RR* X. RR* ) ) | 
						
							| 18 | 17 | anidms |  |-  ( A C_ RR* -> ( A X. A ) C_ ( RR* X. RR* ) ) | 
						
							| 19 |  | sseqin2 |  |-  ( ( A X. A ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) | 
						
							| 20 | 18 19 | sylib |  |-  ( A C_ RR* -> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) | 
						
							| 21 | 20 | difeq1d |  |-  ( A C_ RR* -> ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ < ) = ( ( A X. A ) \ < ) ) | 
						
							| 22 | 16 21 | eqtr2id |  |-  ( A C_ RR* -> ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) ) | 
						
							| 24 |  | isoeq2 |  |-  ( ( ( A X. A ) \ < ) = ( `' <_ i^i ( A X. A ) ) -> ( F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom ( ( A X. A ) \ < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) | 
						
							| 26 | 5 | ineq1i |  |-  ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) | 
						
							| 27 |  | indif1 |  |-  ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) | 
						
							| 28 | 26 27 | eqtri |  |-  ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) | 
						
							| 29 |  | xpss12 |  |-  ( ( B C_ RR* /\ B C_ RR* ) -> ( B X. B ) C_ ( RR* X. RR* ) ) | 
						
							| 30 | 29 | anidms |  |-  ( B C_ RR* -> ( B X. B ) C_ ( RR* X. RR* ) ) | 
						
							| 31 |  | sseqin2 |  |-  ( ( B X. B ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) | 
						
							| 32 | 30 31 | sylib |  |-  ( B C_ RR* -> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) | 
						
							| 33 | 32 | difeq1d |  |-  ( B C_ RR* -> ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) = ( ( B X. B ) \ `' < ) ) | 
						
							| 34 | 28 33 | eqtr2id |  |-  ( B C_ RR* -> ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) ) | 
						
							| 36 |  | isoeq3 |  |-  ( ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) -> ( F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom ( `' <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) | 
						
							| 38 | 4 25 37 | 3bitrd |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) | 
						
							| 39 |  | isocnv2 |  |-  ( F Isom `' <_ , <_ ( A , B ) <-> F Isom `' `' <_ , `' <_ ( A , B ) ) | 
						
							| 40 |  | isores2 |  |-  ( F Isom `' <_ , <_ ( A , B ) <-> F Isom `' <_ , ( <_ i^i ( B X. B ) ) ( A , B ) ) | 
						
							| 41 |  | isores1 |  |-  ( F Isom `' <_ , ( <_ i^i ( B X. B ) ) ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) | 
						
							| 42 | 40 41 | bitri |  |-  ( F Isom `' <_ , <_ ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) | 
						
							| 43 |  | lerel |  |-  Rel <_ | 
						
							| 44 |  | dfrel2 |  |-  ( Rel <_ <-> `' `' <_ = <_ ) | 
						
							| 45 | 43 44 | mpbi |  |-  `' `' <_ = <_ | 
						
							| 46 |  | isoeq2 |  |-  ( `' `' <_ = <_ -> ( F Isom `' `' <_ , `' <_ ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) ) | 
						
							| 47 | 45 46 | ax-mp |  |-  ( F Isom `' `' <_ , `' <_ ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) | 
						
							| 48 | 39 42 47 | 3bitr3ri |  |-  ( F Isom <_ , `' <_ ( A , B ) <-> F Isom ( `' <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) | 
						
							| 49 | 38 48 | bitr4di |  |-  ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , `' < ( A , B ) <-> F Isom <_ , `' <_ ( A , B ) ) ) |