| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
| 3 |
2
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> B e. RR ) |
| 4 |
|
simp1 |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> A e. RR ) |
| 5 |
|
nngt0 |
|- ( B e. NN -> 0 < B ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < B ) |
| 7 |
5
|
adantl |
|- ( ( A e. RR /\ B e. NN ) -> 0 < B ) |
| 8 |
|
0re |
|- 0 e. RR |
| 9 |
|
lttr |
|- ( ( 0 e. RR /\ B e. RR /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 10 |
8 9
|
mp3an1 |
|- ( ( B e. RR /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 11 |
2 10
|
sylan |
|- ( ( B e. NN /\ A e. RR ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 12 |
11
|
ancoms |
|- ( ( A e. RR /\ B e. NN ) -> ( ( 0 < B /\ B < A ) -> 0 < A ) ) |
| 13 |
7 12
|
mpand |
|- ( ( A e. RR /\ B e. NN ) -> ( B < A -> 0 < A ) ) |
| 14 |
13
|
3impia |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < A ) |
| 15 |
3 4 6 14
|
divgt0d |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> 0 < ( B / A ) ) |
| 16 |
|
simp3 |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> B < A ) |
| 17 |
|
1re |
|- 1 e. RR |
| 18 |
|
ltdivmul2 |
|- ( ( B e. RR /\ 1 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
| 19 |
17 18
|
mp3an2 |
|- ( ( B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
| 20 |
3 4 14 19
|
syl12anc |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( ( B / A ) < 1 <-> B < ( 1 x. A ) ) ) |
| 21 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 22 |
21
|
mullidd |
|- ( A e. RR -> ( 1 x. A ) = A ) |
| 23 |
22
|
breq2d |
|- ( A e. RR -> ( B < ( 1 x. A ) <-> B < A ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B < ( 1 x. A ) <-> B < A ) ) |
| 25 |
20 24
|
bitrd |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( ( B / A ) < 1 <-> B < A ) ) |
| 26 |
16 25
|
mpbird |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B / A ) < 1 ) |
| 27 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 28 |
26 27
|
breqtrrdi |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> ( B / A ) < ( 0 + 1 ) ) |
| 29 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( B / A ) /\ ( B / A ) < ( 0 + 1 ) ) -> -. ( B / A ) e. ZZ ) |
| 30 |
1 15 28 29
|
mp3an2i |
|- ( ( A e. RR /\ B e. NN /\ B < A ) -> -. ( B / A ) e. ZZ ) |