Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | |- ( ph -> A e. RR ) |
|
| ltned.2 | |- ( ph -> A < B ) |
||
| Assertion | gtned | |- ( ph -> B =/= A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltned.2 | |- ( ph -> A < B ) |
|
| 3 | ltne | |- ( ( A e. RR /\ A < B ) -> B =/= A ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> B =/= A ) |