Metamath Proof Explorer


Theorem gtneii

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013)

Ref Expression
Hypotheses lt.1
|- A e. RR
ltneii.2
|- A < B
Assertion gtneii
|- B =/= A

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 ltneii.2
 |-  A < B
3 ltne
 |-  ( ( A e. RR /\ A < B ) -> B =/= A )
4 1 2 3 mp2an
 |-  B =/= A