Metamath Proof Explorer


Theorem gtnelioc

Description: A real number larger than the upper bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelioc.a
|- ( ph -> A e. RR* )
gtnelioc.b
|- ( ph -> B e. RR )
gtnelioc.c
|- ( ph -> C e. RR* )
gtnelioc.bltc
|- ( ph -> B < C )
Assertion gtnelioc
|- ( ph -> -. C e. ( A (,] B ) )

Proof

Step Hyp Ref Expression
1 gtnelioc.a
 |-  ( ph -> A e. RR* )
2 gtnelioc.b
 |-  ( ph -> B e. RR )
3 gtnelioc.c
 |-  ( ph -> C e. RR* )
4 gtnelioc.bltc
 |-  ( ph -> B < C )
5 2 rexrd
 |-  ( ph -> B e. RR* )
6 xrltnle
 |-  ( ( B e. RR* /\ C e. RR* ) -> ( B < C <-> -. C <_ B ) )
7 5 3 6 syl2anc
 |-  ( ph -> ( B < C <-> -. C <_ B ) )
8 4 7 mpbid
 |-  ( ph -> -. C <_ B )
9 8 intn3an3d
 |-  ( ph -> -. ( C e. RR /\ A < C /\ C <_ B ) )
10 elioc2
 |-  ( ( A e. RR* /\ B e. RR ) -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) )
11 1 2 10 syl2anc
 |-  ( ph -> ( C e. ( A (,] B ) <-> ( C e. RR /\ A < C /\ C <_ B ) ) )
12 9 11 mtbird
 |-  ( ph -> -. C e. ( A (,] B ) )