Metamath Proof Explorer


Theorem gznegcl

Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion gznegcl
|- ( A e. Z[i] -> -u A e. Z[i] )

Proof

Step Hyp Ref Expression
1 gzcn
 |-  ( A e. Z[i] -> A e. CC )
2 1 negcld
 |-  ( A e. Z[i] -> -u A e. CC )
3 1 renegd
 |-  ( A e. Z[i] -> ( Re ` -u A ) = -u ( Re ` A ) )
4 elgz
 |-  ( A e. Z[i] <-> ( A e. CC /\ ( Re ` A ) e. ZZ /\ ( Im ` A ) e. ZZ ) )
5 4 simp2bi
 |-  ( A e. Z[i] -> ( Re ` A ) e. ZZ )
6 5 znegcld
 |-  ( A e. Z[i] -> -u ( Re ` A ) e. ZZ )
7 3 6 eqeltrd
 |-  ( A e. Z[i] -> ( Re ` -u A ) e. ZZ )
8 1 imnegd
 |-  ( A e. Z[i] -> ( Im ` -u A ) = -u ( Im ` A ) )
9 4 simp3bi
 |-  ( A e. Z[i] -> ( Im ` A ) e. ZZ )
10 9 znegcld
 |-  ( A e. Z[i] -> -u ( Im ` A ) e. ZZ )
11 8 10 eqeltrd
 |-  ( A e. Z[i] -> ( Im ` -u A ) e. ZZ )
12 elgz
 |-  ( -u A e. Z[i] <-> ( -u A e. CC /\ ( Re ` -u A ) e. ZZ /\ ( Im ` -u A ) e. ZZ ) )
13 2 7 11 12 syl3anbrc
 |-  ( A e. Z[i] -> -u A e. Z[i] )