Description: Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | gzreim | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zgz | |- ( A e. ZZ -> A e. Z[i] ) |
|
2 | igz | |- _i e. Z[i] |
|
3 | zgz | |- ( B e. ZZ -> B e. Z[i] ) |
|
4 | gzmulcl | |- ( ( _i e. Z[i] /\ B e. Z[i] ) -> ( _i x. B ) e. Z[i] ) |
|
5 | 2 3 4 | sylancr | |- ( B e. ZZ -> ( _i x. B ) e. Z[i] ) |
6 | gzaddcl | |- ( ( A e. Z[i] /\ ( _i x. B ) e. Z[i] ) -> ( A + ( _i x. B ) ) e. Z[i] ) |
|
7 | 1 5 6 | syl2an | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A + ( _i x. B ) ) e. Z[i] ) |