| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gzrng.1 |  |-  Z = ( CCfld |`s Z[i] ) | 
						
							| 2 |  | gzsubrg |  |-  Z[i] e. ( SubRing ` CCfld ) | 
						
							| 3 | 1 | subrgbas |  |-  ( Z[i] e. ( SubRing ` CCfld ) -> Z[i] = ( Base ` Z ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  Z[i] = ( Base ` Z ) | 
						
							| 5 |  | eqid |  |-  ( Unit ` Z ) = ( Unit ` Z ) | 
						
							| 6 | 4 5 | unitcl |  |-  ( A e. ( Unit ` Z ) -> A e. Z[i] ) | 
						
							| 7 |  | eqid |  |-  ( invr ` CCfld ) = ( invr ` CCfld ) | 
						
							| 8 |  | eqid |  |-  ( invr ` Z ) = ( invr ` Z ) | 
						
							| 9 | 1 7 5 8 | subrginv |  |-  ( ( Z[i] e. ( SubRing ` CCfld ) /\ A e. ( Unit ` Z ) ) -> ( ( invr ` CCfld ) ` A ) = ( ( invr ` Z ) ` A ) ) | 
						
							| 10 | 2 9 | mpan |  |-  ( A e. ( Unit ` Z ) -> ( ( invr ` CCfld ) ` A ) = ( ( invr ` Z ) ` A ) ) | 
						
							| 11 |  | gzcn |  |-  ( A e. Z[i] -> A e. CC ) | 
						
							| 12 | 6 11 | syl |  |-  ( A e. ( Unit ` Z ) -> A e. CC ) | 
						
							| 13 |  | 0red |  |-  ( A e. ( Unit ` Z ) -> 0 e. RR ) | 
						
							| 14 |  | 1re |  |-  1 e. RR | 
						
							| 15 | 14 | a1i |  |-  ( A e. ( Unit ` Z ) -> 1 e. RR ) | 
						
							| 16 | 12 | abscld |  |-  ( A e. ( Unit ` Z ) -> ( abs ` A ) e. RR ) | 
						
							| 17 |  | 0lt1 |  |-  0 < 1 | 
						
							| 18 | 17 | a1i |  |-  ( A e. ( Unit ` Z ) -> 0 < 1 ) | 
						
							| 19 | 1 | gzrngunitlem |  |-  ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` A ) ) | 
						
							| 20 | 13 15 16 18 19 | ltletrd |  |-  ( A e. ( Unit ` Z ) -> 0 < ( abs ` A ) ) | 
						
							| 21 | 20 | gt0ne0d |  |-  ( A e. ( Unit ` Z ) -> ( abs ` A ) =/= 0 ) | 
						
							| 22 | 12 | abs00ad |  |-  ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) | 
						
							| 23 | 22 | necon3bid |  |-  ( A e. ( Unit ` Z ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) | 
						
							| 24 | 21 23 | mpbid |  |-  ( A e. ( Unit ` Z ) -> A =/= 0 ) | 
						
							| 25 |  | cnfldinv |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) | 
						
							| 26 | 12 24 25 | syl2anc |  |-  ( A e. ( Unit ` Z ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) | 
						
							| 27 | 10 26 | eqtr3d |  |-  ( A e. ( Unit ` Z ) -> ( ( invr ` Z ) ` A ) = ( 1 / A ) ) | 
						
							| 28 | 1 | subrgring |  |-  ( Z[i] e. ( SubRing ` CCfld ) -> Z e. Ring ) | 
						
							| 29 | 2 28 | ax-mp |  |-  Z e. Ring | 
						
							| 30 | 5 8 | unitinvcl |  |-  ( ( Z e. Ring /\ A e. ( Unit ` Z ) ) -> ( ( invr ` Z ) ` A ) e. ( Unit ` Z ) ) | 
						
							| 31 | 29 30 | mpan |  |-  ( A e. ( Unit ` Z ) -> ( ( invr ` Z ) ` A ) e. ( Unit ` Z ) ) | 
						
							| 32 | 27 31 | eqeltrrd |  |-  ( A e. ( Unit ` Z ) -> ( 1 / A ) e. ( Unit ` Z ) ) | 
						
							| 33 | 1 | gzrngunitlem |  |-  ( ( 1 / A ) e. ( Unit ` Z ) -> 1 <_ ( abs ` ( 1 / A ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` ( 1 / A ) ) ) | 
						
							| 35 |  | 1cnd |  |-  ( A e. ( Unit ` Z ) -> 1 e. CC ) | 
						
							| 36 | 35 12 24 | absdivd |  |-  ( A e. ( Unit ` Z ) -> ( abs ` ( 1 / A ) ) = ( ( abs ` 1 ) / ( abs ` A ) ) ) | 
						
							| 37 | 34 36 | breqtrd |  |-  ( A e. ( Unit ` Z ) -> 1 <_ ( ( abs ` 1 ) / ( abs ` A ) ) ) | 
						
							| 38 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 39 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 40 | 39 | eqcomi |  |-  1 = ( abs ` 1 ) | 
						
							| 41 | 40 | oveq1i |  |-  ( 1 / ( abs ` A ) ) = ( ( abs ` 1 ) / ( abs ` A ) ) | 
						
							| 42 | 37 38 41 | 3brtr4g |  |-  ( A e. ( Unit ` Z ) -> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) | 
						
							| 43 |  | lerec |  |-  ( ( ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( abs ` A ) <_ 1 <-> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) ) | 
						
							| 44 | 16 20 15 18 43 | syl22anc |  |-  ( A e. ( Unit ` Z ) -> ( ( abs ` A ) <_ 1 <-> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) ) | 
						
							| 45 | 42 44 | mpbird |  |-  ( A e. ( Unit ` Z ) -> ( abs ` A ) <_ 1 ) | 
						
							| 46 |  | letri3 |  |-  ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) = 1 <-> ( ( abs ` A ) <_ 1 /\ 1 <_ ( abs ` A ) ) ) ) | 
						
							| 47 | 16 14 46 | sylancl |  |-  ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 1 <-> ( ( abs ` A ) <_ 1 /\ 1 <_ ( abs ` A ) ) ) ) | 
						
							| 48 | 45 19 47 | mpbir2and |  |-  ( A e. ( Unit ` Z ) -> ( abs ` A ) = 1 ) | 
						
							| 49 | 6 48 | jca |  |-  ( A e. ( Unit ` Z ) -> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) | 
						
							| 50 | 11 | adantr |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. CC ) | 
						
							| 51 |  | simpr |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 ) | 
						
							| 52 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 53 | 52 | a1i |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> 1 =/= 0 ) | 
						
							| 54 | 51 53 | eqnetrd |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( abs ` A ) =/= 0 ) | 
						
							| 55 |  | fveq2 |  |-  ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) | 
						
							| 56 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 57 | 55 56 | eqtrdi |  |-  ( A = 0 -> ( abs ` A ) = 0 ) | 
						
							| 58 | 57 | necon3i |  |-  ( ( abs ` A ) =/= 0 -> A =/= 0 ) | 
						
							| 59 | 54 58 | syl |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A =/= 0 ) | 
						
							| 60 |  | eldifsn |  |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) | 
						
							| 61 | 50 59 60 | sylanbrc |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. ( CC \ { 0 } ) ) | 
						
							| 62 |  | simpl |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. Z[i] ) | 
						
							| 63 | 50 59 25 | syl2anc |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) | 
						
							| 64 | 50 | absvalsqd |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) | 
						
							| 65 | 51 | oveq1d |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 66 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 67 | 65 66 | eqtrdi |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) | 
						
							| 68 | 64 67 | eqtr3d |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( A x. ( * ` A ) ) = 1 ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( A x. ( * ` A ) ) / A ) = ( 1 / A ) ) | 
						
							| 70 | 50 | cjcld |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( * ` A ) e. CC ) | 
						
							| 71 | 70 50 59 | divcan3d |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( A x. ( * ` A ) ) / A ) = ( * ` A ) ) | 
						
							| 72 | 63 69 71 | 3eqtr2d |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( * ` A ) ) | 
						
							| 73 |  | gzcjcl |  |-  ( A e. Z[i] -> ( * ` A ) e. Z[i] ) | 
						
							| 74 | 73 | adantr |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( * ` A ) e. Z[i] ) | 
						
							| 75 | 72 74 | eqeltrd |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) e. Z[i] ) | 
						
							| 76 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 77 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 78 |  | cndrng |  |-  CCfld e. DivRing | 
						
							| 79 | 76 77 78 | drngui |  |-  ( CC \ { 0 } ) = ( Unit ` CCfld ) | 
						
							| 80 | 1 79 5 7 | subrgunit |  |-  ( Z[i] e. ( SubRing ` CCfld ) -> ( A e. ( Unit ` Z ) <-> ( A e. ( CC \ { 0 } ) /\ A e. Z[i] /\ ( ( invr ` CCfld ) ` A ) e. Z[i] ) ) ) | 
						
							| 81 | 2 80 | ax-mp |  |-  ( A e. ( Unit ` Z ) <-> ( A e. ( CC \ { 0 } ) /\ A e. Z[i] /\ ( ( invr ` CCfld ) ` A ) e. Z[i] ) ) | 
						
							| 82 | 61 62 75 81 | syl3anbrc |  |-  ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. ( Unit ` Z ) ) | 
						
							| 83 | 49 82 | impbii |  |-  ( A e. ( Unit ` Z ) <-> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) |