Step |
Hyp |
Ref |
Expression |
1 |
|
gzrng.1 |
|- Z = ( CCfld |`s Z[i] ) |
2 |
|
gzsubrg |
|- Z[i] e. ( SubRing ` CCfld ) |
3 |
1
|
subrgbas |
|- ( Z[i] e. ( SubRing ` CCfld ) -> Z[i] = ( Base ` Z ) ) |
4 |
2 3
|
ax-mp |
|- Z[i] = ( Base ` Z ) |
5 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
6 |
4 5
|
unitcl |
|- ( A e. ( Unit ` Z ) -> A e. Z[i] ) |
7 |
|
eqid |
|- ( invr ` CCfld ) = ( invr ` CCfld ) |
8 |
|
eqid |
|- ( invr ` Z ) = ( invr ` Z ) |
9 |
1 7 5 8
|
subrginv |
|- ( ( Z[i] e. ( SubRing ` CCfld ) /\ A e. ( Unit ` Z ) ) -> ( ( invr ` CCfld ) ` A ) = ( ( invr ` Z ) ` A ) ) |
10 |
2 9
|
mpan |
|- ( A e. ( Unit ` Z ) -> ( ( invr ` CCfld ) ` A ) = ( ( invr ` Z ) ` A ) ) |
11 |
|
gzcn |
|- ( A e. Z[i] -> A e. CC ) |
12 |
6 11
|
syl |
|- ( A e. ( Unit ` Z ) -> A e. CC ) |
13 |
|
0red |
|- ( A e. ( Unit ` Z ) -> 0 e. RR ) |
14 |
|
1re |
|- 1 e. RR |
15 |
14
|
a1i |
|- ( A e. ( Unit ` Z ) -> 1 e. RR ) |
16 |
12
|
abscld |
|- ( A e. ( Unit ` Z ) -> ( abs ` A ) e. RR ) |
17 |
|
0lt1 |
|- 0 < 1 |
18 |
17
|
a1i |
|- ( A e. ( Unit ` Z ) -> 0 < 1 ) |
19 |
1
|
gzrngunitlem |
|- ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` A ) ) |
20 |
13 15 16 18 19
|
ltletrd |
|- ( A e. ( Unit ` Z ) -> 0 < ( abs ` A ) ) |
21 |
20
|
gt0ne0d |
|- ( A e. ( Unit ` Z ) -> ( abs ` A ) =/= 0 ) |
22 |
12
|
abs00ad |
|- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 0 <-> A = 0 ) ) |
23 |
22
|
necon3bid |
|- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) =/= 0 <-> A =/= 0 ) ) |
24 |
21 23
|
mpbid |
|- ( A e. ( Unit ` Z ) -> A =/= 0 ) |
25 |
|
cnfldinv |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
26 |
12 24 25
|
syl2anc |
|- ( A e. ( Unit ` Z ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
27 |
10 26
|
eqtr3d |
|- ( A e. ( Unit ` Z ) -> ( ( invr ` Z ) ` A ) = ( 1 / A ) ) |
28 |
1
|
subrgring |
|- ( Z[i] e. ( SubRing ` CCfld ) -> Z e. Ring ) |
29 |
2 28
|
ax-mp |
|- Z e. Ring |
30 |
5 8
|
unitinvcl |
|- ( ( Z e. Ring /\ A e. ( Unit ` Z ) ) -> ( ( invr ` Z ) ` A ) e. ( Unit ` Z ) ) |
31 |
29 30
|
mpan |
|- ( A e. ( Unit ` Z ) -> ( ( invr ` Z ) ` A ) e. ( Unit ` Z ) ) |
32 |
27 31
|
eqeltrrd |
|- ( A e. ( Unit ` Z ) -> ( 1 / A ) e. ( Unit ` Z ) ) |
33 |
1
|
gzrngunitlem |
|- ( ( 1 / A ) e. ( Unit ` Z ) -> 1 <_ ( abs ` ( 1 / A ) ) ) |
34 |
32 33
|
syl |
|- ( A e. ( Unit ` Z ) -> 1 <_ ( abs ` ( 1 / A ) ) ) |
35 |
|
1cnd |
|- ( A e. ( Unit ` Z ) -> 1 e. CC ) |
36 |
35 12 24
|
absdivd |
|- ( A e. ( Unit ` Z ) -> ( abs ` ( 1 / A ) ) = ( ( abs ` 1 ) / ( abs ` A ) ) ) |
37 |
34 36
|
breqtrd |
|- ( A e. ( Unit ` Z ) -> 1 <_ ( ( abs ` 1 ) / ( abs ` A ) ) ) |
38 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
39 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
40 |
39
|
eqcomi |
|- 1 = ( abs ` 1 ) |
41 |
40
|
oveq1i |
|- ( 1 / ( abs ` A ) ) = ( ( abs ` 1 ) / ( abs ` A ) ) |
42 |
37 38 41
|
3brtr4g |
|- ( A e. ( Unit ` Z ) -> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) |
43 |
|
lerec |
|- ( ( ( ( abs ` A ) e. RR /\ 0 < ( abs ` A ) ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( abs ` A ) <_ 1 <-> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) ) |
44 |
16 20 15 18 43
|
syl22anc |
|- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) <_ 1 <-> ( 1 / 1 ) <_ ( 1 / ( abs ` A ) ) ) ) |
45 |
42 44
|
mpbird |
|- ( A e. ( Unit ` Z ) -> ( abs ` A ) <_ 1 ) |
46 |
|
letri3 |
|- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) = 1 <-> ( ( abs ` A ) <_ 1 /\ 1 <_ ( abs ` A ) ) ) ) |
47 |
16 14 46
|
sylancl |
|- ( A e. ( Unit ` Z ) -> ( ( abs ` A ) = 1 <-> ( ( abs ` A ) <_ 1 /\ 1 <_ ( abs ` A ) ) ) ) |
48 |
45 19 47
|
mpbir2and |
|- ( A e. ( Unit ` Z ) -> ( abs ` A ) = 1 ) |
49 |
6 48
|
jca |
|- ( A e. ( Unit ` Z ) -> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) |
50 |
11
|
adantr |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. CC ) |
51 |
|
simpr |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( abs ` A ) = 1 ) |
52 |
|
ax-1ne0 |
|- 1 =/= 0 |
53 |
52
|
a1i |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> 1 =/= 0 ) |
54 |
51 53
|
eqnetrd |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( abs ` A ) =/= 0 ) |
55 |
|
fveq2 |
|- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
56 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
57 |
55 56
|
eqtrdi |
|- ( A = 0 -> ( abs ` A ) = 0 ) |
58 |
57
|
necon3i |
|- ( ( abs ` A ) =/= 0 -> A =/= 0 ) |
59 |
54 58
|
syl |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A =/= 0 ) |
60 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
61 |
50 59 60
|
sylanbrc |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. ( CC \ { 0 } ) ) |
62 |
|
simpl |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. Z[i] ) |
63 |
50 59 25
|
syl2anc |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( 1 / A ) ) |
64 |
50
|
absvalsqd |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( A x. ( * ` A ) ) ) |
65 |
51
|
oveq1d |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = ( 1 ^ 2 ) ) |
66 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
67 |
65 66
|
eqtrdi |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( abs ` A ) ^ 2 ) = 1 ) |
68 |
64 67
|
eqtr3d |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( A x. ( * ` A ) ) = 1 ) |
69 |
68
|
oveq1d |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( A x. ( * ` A ) ) / A ) = ( 1 / A ) ) |
70 |
50
|
cjcld |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( * ` A ) e. CC ) |
71 |
70 50 59
|
divcan3d |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( A x. ( * ` A ) ) / A ) = ( * ` A ) ) |
72 |
63 69 71
|
3eqtr2d |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) = ( * ` A ) ) |
73 |
|
gzcjcl |
|- ( A e. Z[i] -> ( * ` A ) e. Z[i] ) |
74 |
73
|
adantr |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( * ` A ) e. Z[i] ) |
75 |
72 74
|
eqeltrd |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> ( ( invr ` CCfld ) ` A ) e. Z[i] ) |
76 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
77 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
78 |
|
cndrng |
|- CCfld e. DivRing |
79 |
76 77 78
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
80 |
1 79 5 7
|
subrgunit |
|- ( Z[i] e. ( SubRing ` CCfld ) -> ( A e. ( Unit ` Z ) <-> ( A e. ( CC \ { 0 } ) /\ A e. Z[i] /\ ( ( invr ` CCfld ) ` A ) e. Z[i] ) ) ) |
81 |
2 80
|
ax-mp |
|- ( A e. ( Unit ` Z ) <-> ( A e. ( CC \ { 0 } ) /\ A e. Z[i] /\ ( ( invr ` CCfld ) ` A ) e. Z[i] ) ) |
82 |
61 62 75 81
|
syl3anbrc |
|- ( ( A e. Z[i] /\ ( abs ` A ) = 1 ) -> A e. ( Unit ` Z ) ) |
83 |
49 82
|
impbii |
|- ( A e. ( Unit ` Z ) <-> ( A e. Z[i] /\ ( abs ` A ) = 1 ) ) |