Description: The gaussian integers are closed under subtraction. (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzsubcl | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A - B ) e. Z[i] ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gzcn | |- ( A e. Z[i] -> A e. CC ) | |
| 2 | gzcn | |- ( B e. Z[i] -> B e. CC ) | |
| 3 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) | |
| 4 | 1 2 3 | syl2an | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A + -u B ) = ( A - B ) ) | 
| 5 | gznegcl | |- ( B e. Z[i] -> -u B e. Z[i] ) | |
| 6 | gzaddcl | |- ( ( A e. Z[i] /\ -u B e. Z[i] ) -> ( A + -u B ) e. Z[i] ) | |
| 7 | 5 6 | sylan2 | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A + -u B ) e. Z[i] ) | 
| 8 | 4 7 | eqeltrrd | |- ( ( A e. Z[i] /\ B e. Z[i] ) -> ( A - B ) e. Z[i] ) |